Almustapha A. Wakili, Babajide J. Asaju, Woosub Jung
{"title":"呼吸作为一种生物标志物:在呼吸监测中的接触和非接触应用和方法的调查","authors":"Almustapha A. Wakili, Babajide J. Asaju, Woosub Jung","doi":"10.1016/j.smhl.2025.100579","DOIUrl":null,"url":null,"abstract":"<div><div>Breath analysis has emerged as a critical tool in health monitoring, offering insights into respiratory function, disease detection, and continuous health assessment. While traditional contact-based methods are reliable, they often pose challenges in comfort and practicality, particularly for long-term monitoring. This survey comprehensively examines contact-based and contactless approaches, emphasizing recent advances in machine learning and deep learning techniques applied to breath analysis. Contactless methods, including Wi-Fi Channel State Information and acoustic sensing, are analyzed for their ability to provide accurate, noninvasive respiratory monitoring.</div><div>We explore a broad range of applications, from single-user respiratory rate detection to multi-user scenarios, user identification, and respiratory disease detection. Furthermore, this survey details essential data preprocessing, feature extraction, and classification techniques, offering comparative insights into machine learning/deep learning models suited to each approach. Key challenges like dataset scarcity, multi-user interference, and data privacy are also discussed, along with emerging trends like Explainable AI, federated learning, transfer learning, and hybrid modeling. By synthesizing current methodologies and identifying open research directions, this survey offers a comprehensive framework to guide future innovations in breath analysis, bridging advanced technological capabilities with practical healthcare applications.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100579"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breath as a biomarker: A survey of contact and contactless applications and approaches in respiratory monitoring\",\"authors\":\"Almustapha A. Wakili, Babajide J. Asaju, Woosub Jung\",\"doi\":\"10.1016/j.smhl.2025.100579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Breath analysis has emerged as a critical tool in health monitoring, offering insights into respiratory function, disease detection, and continuous health assessment. While traditional contact-based methods are reliable, they often pose challenges in comfort and practicality, particularly for long-term monitoring. This survey comprehensively examines contact-based and contactless approaches, emphasizing recent advances in machine learning and deep learning techniques applied to breath analysis. Contactless methods, including Wi-Fi Channel State Information and acoustic sensing, are analyzed for their ability to provide accurate, noninvasive respiratory monitoring.</div><div>We explore a broad range of applications, from single-user respiratory rate detection to multi-user scenarios, user identification, and respiratory disease detection. Furthermore, this survey details essential data preprocessing, feature extraction, and classification techniques, offering comparative insights into machine learning/deep learning models suited to each approach. Key challenges like dataset scarcity, multi-user interference, and data privacy are also discussed, along with emerging trends like Explainable AI, federated learning, transfer learning, and hybrid modeling. By synthesizing current methodologies and identifying open research directions, this survey offers a comprehensive framework to guide future innovations in breath analysis, bridging advanced technological capabilities with practical healthcare applications.</div></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"36 \",\"pages\":\"Article 100579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648325000406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
Breath as a biomarker: A survey of contact and contactless applications and approaches in respiratory monitoring
Breath analysis has emerged as a critical tool in health monitoring, offering insights into respiratory function, disease detection, and continuous health assessment. While traditional contact-based methods are reliable, they often pose challenges in comfort and practicality, particularly for long-term monitoring. This survey comprehensively examines contact-based and contactless approaches, emphasizing recent advances in machine learning and deep learning techniques applied to breath analysis. Contactless methods, including Wi-Fi Channel State Information and acoustic sensing, are analyzed for their ability to provide accurate, noninvasive respiratory monitoring.
We explore a broad range of applications, from single-user respiratory rate detection to multi-user scenarios, user identification, and respiratory disease detection. Furthermore, this survey details essential data preprocessing, feature extraction, and classification techniques, offering comparative insights into machine learning/deep learning models suited to each approach. Key challenges like dataset scarcity, multi-user interference, and data privacy are also discussed, along with emerging trends like Explainable AI, federated learning, transfer learning, and hybrid modeling. By synthesizing current methodologies and identifying open research directions, this survey offers a comprehensive framework to guide future innovations in breath analysis, bridging advanced technological capabilities with practical healthcare applications.