{"title":"结构扰动下的瞬态动力学:桥接非结构和结构伪谱","authors":"Nicola Guglielmi, Christian Lubich","doi":"10.1137/24m1630876","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 908-930, April 2025. <br/> Abstract. The structured [math]-stability radius is introduced as a quantity to assess the robustness of transient bounds of solutions to linear differential equations under structured perturbations of the matrix. This applies to general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz matrices. The notion conceptually combines unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. We propose and study an algorithm for computing the structured [math]-stability radius, which solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations that originate from a gradient system. The proposed algorithm has essentially the same computational cost as the known rank-1 algorithms for computing unstructured and structured stability radii. Numerical experiments illustrate the behavior of the algorithm.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"138 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Dynamics under Structured Perturbations: Bridging Unstructured and Structured Pseudospectra\",\"authors\":\"Nicola Guglielmi, Christian Lubich\",\"doi\":\"10.1137/24m1630876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 908-930, April 2025. <br/> Abstract. The structured [math]-stability radius is introduced as a quantity to assess the robustness of transient bounds of solutions to linear differential equations under structured perturbations of the matrix. This applies to general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz matrices. The notion conceptually combines unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. We propose and study an algorithm for computing the structured [math]-stability radius, which solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations that originate from a gradient system. The proposed algorithm has essentially the same computational cost as the known rank-1 algorithms for computing unstructured and structured stability radii. Numerical experiments illustrate the behavior of the algorithm.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1630876\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1630876","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Transient Dynamics under Structured Perturbations: Bridging Unstructured and Structured Pseudospectra
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 908-930, April 2025. Abstract. The structured [math]-stability radius is introduced as a quantity to assess the robustness of transient bounds of solutions to linear differential equations under structured perturbations of the matrix. This applies to general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz matrices. The notion conceptually combines unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. We propose and study an algorithm for computing the structured [math]-stability radius, which solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations that originate from a gradient system. The proposed algorithm has essentially the same computational cost as the known rank-1 algorithms for computing unstructured and structured stability radii. Numerical experiments illustrate the behavior of the algorithm.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.