经验插值方法与切比雪夫贪婪算法的新分析

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Yuwen Li
{"title":"经验插值方法与切比雪夫贪婪算法的新分析","authors":"Yuwen Li","doi":"10.1137/24m1634230","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 931-948, April 2025. <br/> Abstract. We present new convergence estimates of generalized empirical interpolation methods in terms of the entropy numbers of the parametrized function class. Our analysis is transparent and leads to sharper convergence rates than the classical analysis via the Kolmogorov [math]-width. In addition, we also derive novel entropy-based convergence estimates of the Chebyshev greedy algorithm for sparse [math]-term nonlinear approximation of a target function. This also improves classical convergence analysis when corresponding entropy numbers decay fast enough.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Analysis of Empirical Interpolation Methods and Chebyshev Greedy Algorithms\",\"authors\":\"Yuwen Li\",\"doi\":\"10.1137/24m1634230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 931-948, April 2025. <br/> Abstract. We present new convergence estimates of generalized empirical interpolation methods in terms of the entropy numbers of the parametrized function class. Our analysis is transparent and leads to sharper convergence rates than the classical analysis via the Kolmogorov [math]-width. In addition, we also derive novel entropy-based convergence estimates of the Chebyshev greedy algorithm for sparse [math]-term nonlinear approximation of a target function. This also improves classical convergence analysis when corresponding entropy numbers decay fast enough.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1634230\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1634230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第2期,第931-948页,2025年4月。摘要。根据参数化函数类的熵值,给出了广义经验插值方法的收敛性估计。我们的分析是透明的,并且比通过Kolmogorov[数学]宽度的经典分析产生更快的收敛率。此外,我们还为目标函数的稀疏[数学]项非线性逼近导出了新的基于熵的Chebyshev贪婪算法的收敛估计。当相应的熵值衰减得足够快时,这也改进了经典的收敛分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Analysis of Empirical Interpolation Methods and Chebyshev Greedy Algorithms
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 931-948, April 2025.
Abstract. We present new convergence estimates of generalized empirical interpolation methods in terms of the entropy numbers of the parametrized function class. Our analysis is transparent and leads to sharper convergence rates than the classical analysis via the Kolmogorov [math]-width. In addition, we also derive novel entropy-based convergence estimates of the Chebyshev greedy algorithm for sparse [math]-term nonlinear approximation of a target function. This also improves classical convergence analysis when corresponding entropy numbers decay fast enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信