结构化线性定常系统的最优性条件

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Petar Mlinarić, Peter Benner, Serkan Gugercin
{"title":"结构化线性定常系统的最优性条件","authors":"Petar Mlinarić, Peter Benner, Serkan Gugercin","doi":"10.1137/23m1610033","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 949-975, April 2025. <br/> Abstract. Interpolatory necessary optimality conditions for [math]-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on [math]-optimal reduced-order modeling of stationary parametric problems, in this paper, we develop and investigate optimality conditions for [math]-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolatory [math]-Optimality Conditions for Structured Linear Time-Invariant Systems\",\"authors\":\"Petar Mlinarić, Peter Benner, Serkan Gugercin\",\"doi\":\"10.1137/23m1610033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 949-975, April 2025. <br/> Abstract. Interpolatory necessary optimality conditions for [math]-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on [math]-optimal reduced-order modeling of stationary parametric problems, in this paper, we develop and investigate optimality conditions for [math]-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1610033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1610033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第2期,第949-975页,2025年4月。摘要。非结构化线性时不变系统的数学最优降阶建模的插值必要最优性条件是众所周知的。基于先前关于平稳参数问题的[math]-最优降阶建模的工作,在本文中,我们开发并研究了结构化LTI系统的[math]-最优降阶建模的最优性条件,特别是二阶,port- hamilton和时滞系统。在一定的对角化假设下,我们证明了在所有这些不同的结构设置中,双向Hermite插值是最优性的常见形式,从而证明了结构化降阶建模的统一最优性框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolatory [math]-Optimality Conditions for Structured Linear Time-Invariant Systems
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 949-975, April 2025.
Abstract. Interpolatory necessary optimality conditions for [math]-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on [math]-optimal reduced-order modeling of stationary parametric problems, in this paper, we develop and investigate optimality conditions for [math]-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信