{"title":"结构化线性定常系统的最优性条件","authors":"Petar Mlinarić, Peter Benner, Serkan Gugercin","doi":"10.1137/23m1610033","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 949-975, April 2025. <br/> Abstract. Interpolatory necessary optimality conditions for [math]-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on [math]-optimal reduced-order modeling of stationary parametric problems, in this paper, we develop and investigate optimality conditions for [math]-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolatory [math]-Optimality Conditions for Structured Linear Time-Invariant Systems\",\"authors\":\"Petar Mlinarić, Peter Benner, Serkan Gugercin\",\"doi\":\"10.1137/23m1610033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 949-975, April 2025. <br/> Abstract. Interpolatory necessary optimality conditions for [math]-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on [math]-optimal reduced-order modeling of stationary parametric problems, in this paper, we develop and investigate optimality conditions for [math]-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1610033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1610033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Interpolatory [math]-Optimality Conditions for Structured Linear Time-Invariant Systems
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 949-975, April 2025. Abstract. Interpolatory necessary optimality conditions for [math]-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on [math]-optimal reduced-order modeling of stationary parametric problems, in this paper, we develop and investigate optimality conditions for [math]-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.