{"title":"新兴人工智能驱动的肿瘤耐药性精准疗法:最新进展、机遇与挑战","authors":"Yuan Mao, Dangang Shangguan, Qi Huang, Ling Xiao, Dongsheng Cao, Hui Zhou, Yi-Kun Wang","doi":"10.1186/s12943-025-02321-x","DOIUrl":null,"url":null,"abstract":"Drug resistance is one of the main reasons for cancer treatment failure, leading to a rapid recurrence/disease progression of the cancer. Recently, artificial intelligence (AI) has empowered physicians to use its powerful data processing and pattern recognition capabilities to extract and mine valuable drug resistance information from large amounts of clinical or omics data, to study drug resistance mechanisms, to evaluate and predict drug resistance, and to develop innovative therapeutic strategies to reduce drug resistance. In this review, we proposed a feasible workflow for incorporating AI into tumor drug resistance research, highlighted current AI-driven tumor drug resistance applications, and discussed the opportunities and challenges encountered in the process. Based on a comprehensive literature analysis, we systematically summarized the role of AI in tumor drug resistance research, including drug development, resistance mechanism elucidation, drug sensitivity prediction, combination therapy optimization, resistance phenotype identification, and clinical biomarker discovery. With the continuous advancement of AI technology and rigorous validation of clinical data, AI models are expected to fuel the development of precision oncology by improving efficacy, guiding therapeutic decisions, and optimizing patient prognosis. In summary, by leveraging clinical and omics data, AI models are expected to pioneer new therapy strategies to mitigate tumor drug resistance, improve efficacy and patient survival, and provide novel perspectives and tools for oncology treatment. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"34 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging artificial intelligence-driven precision therapies in tumor drug resistance: recent advances, opportunities, and challenges\",\"authors\":\"Yuan Mao, Dangang Shangguan, Qi Huang, Ling Xiao, Dongsheng Cao, Hui Zhou, Yi-Kun Wang\",\"doi\":\"10.1186/s12943-025-02321-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug resistance is one of the main reasons for cancer treatment failure, leading to a rapid recurrence/disease progression of the cancer. Recently, artificial intelligence (AI) has empowered physicians to use its powerful data processing and pattern recognition capabilities to extract and mine valuable drug resistance information from large amounts of clinical or omics data, to study drug resistance mechanisms, to evaluate and predict drug resistance, and to develop innovative therapeutic strategies to reduce drug resistance. In this review, we proposed a feasible workflow for incorporating AI into tumor drug resistance research, highlighted current AI-driven tumor drug resistance applications, and discussed the opportunities and challenges encountered in the process. Based on a comprehensive literature analysis, we systematically summarized the role of AI in tumor drug resistance research, including drug development, resistance mechanism elucidation, drug sensitivity prediction, combination therapy optimization, resistance phenotype identification, and clinical biomarker discovery. With the continuous advancement of AI technology and rigorous validation of clinical data, AI models are expected to fuel the development of precision oncology by improving efficacy, guiding therapeutic decisions, and optimizing patient prognosis. In summary, by leveraging clinical and omics data, AI models are expected to pioneer new therapy strategies to mitigate tumor drug resistance, improve efficacy and patient survival, and provide novel perspectives and tools for oncology treatment. \",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-025-02321-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02321-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Emerging artificial intelligence-driven precision therapies in tumor drug resistance: recent advances, opportunities, and challenges
Drug resistance is one of the main reasons for cancer treatment failure, leading to a rapid recurrence/disease progression of the cancer. Recently, artificial intelligence (AI) has empowered physicians to use its powerful data processing and pattern recognition capabilities to extract and mine valuable drug resistance information from large amounts of clinical or omics data, to study drug resistance mechanisms, to evaluate and predict drug resistance, and to develop innovative therapeutic strategies to reduce drug resistance. In this review, we proposed a feasible workflow for incorporating AI into tumor drug resistance research, highlighted current AI-driven tumor drug resistance applications, and discussed the opportunities and challenges encountered in the process. Based on a comprehensive literature analysis, we systematically summarized the role of AI in tumor drug resistance research, including drug development, resistance mechanism elucidation, drug sensitivity prediction, combination therapy optimization, resistance phenotype identification, and clinical biomarker discovery. With the continuous advancement of AI technology and rigorous validation of clinical data, AI models are expected to fuel the development of precision oncology by improving efficacy, guiding therapeutic decisions, and optimizing patient prognosis. In summary, by leveraging clinical and omics data, AI models are expected to pioneer new therapy strategies to mitigate tumor drug resistance, improve efficacy and patient survival, and provide novel perspectives and tools for oncology treatment.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.