Lipai Huang, Federico Antolini, Ali Mostafavi, Russell Blessing, Matthew Garcia, Samuel D. Brody
{"title":"基于大规模合成降水和淹没数据的生成式机器学习的高分辨率洪水概率映射","authors":"Lipai Huang, Federico Antolini, Ali Mostafavi, Russell Blessing, Matthew Garcia, Samuel D. Brody","doi":"10.1111/mice.13490","DOIUrl":null,"url":null,"abstract":"High-resolution flood probability maps are instrumental for assessing flood risk but are often limited by the availability of historical data. Additionally, producing simulated data needed for creating probabilistic flood maps using physics-based models involves significant computation and time effort, which inhibit its feasibility. To address this gap, this study introduces Precipitation-Flood Depth Generative Pipeline, a novel methodology that leverages generative machine learning to generate large-scale synthetic inundation data to produce probabilistic flood maps. With a focus on Harris County, Texas, Precipitation-Flood Depth Generative Pipeline begins with training a cell-wise depth estimator using a number of precipitation-flood events model with a physics-based model. This cell-wise depth estimator, which emphasizes precipitation-based features, outperforms universal models. Subsequently, the conditional generative adversarial network (CTGAN) is used to conditionally generate synthetic precipitation point cloud, which are filtered using strategic thresholds to align with realistic precipitation patterns. Hence, a precipitation feature pool is constructed for each cell, enabling strategic sampling and the generation of synthetic precipitation events. After generating 10,000 synthetic events, flood probability maps are created for various inundation depths. Validation using similarity and correlation metrics confirms the accuracy of the synthetic depth distributions. The Precipitation-Flood Depth Generative Pipeline provides a scalable solution to generate synthetic flood depth data needed for high-resolution flood probability maps, which can enhance flood mitigation planning.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"23 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution flood probability mapping using generative machine learning with large-scale synthetic precipitation and inundation data\",\"authors\":\"Lipai Huang, Federico Antolini, Ali Mostafavi, Russell Blessing, Matthew Garcia, Samuel D. Brody\",\"doi\":\"10.1111/mice.13490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution flood probability maps are instrumental for assessing flood risk but are often limited by the availability of historical data. Additionally, producing simulated data needed for creating probabilistic flood maps using physics-based models involves significant computation and time effort, which inhibit its feasibility. To address this gap, this study introduces Precipitation-Flood Depth Generative Pipeline, a novel methodology that leverages generative machine learning to generate large-scale synthetic inundation data to produce probabilistic flood maps. With a focus on Harris County, Texas, Precipitation-Flood Depth Generative Pipeline begins with training a cell-wise depth estimator using a number of precipitation-flood events model with a physics-based model. This cell-wise depth estimator, which emphasizes precipitation-based features, outperforms universal models. Subsequently, the conditional generative adversarial network (CTGAN) is used to conditionally generate synthetic precipitation point cloud, which are filtered using strategic thresholds to align with realistic precipitation patterns. Hence, a precipitation feature pool is constructed for each cell, enabling strategic sampling and the generation of synthetic precipitation events. After generating 10,000 synthetic events, flood probability maps are created for various inundation depths. Validation using similarity and correlation metrics confirms the accuracy of the synthetic depth distributions. The Precipitation-Flood Depth Generative Pipeline provides a scalable solution to generate synthetic flood depth data needed for high-resolution flood probability maps, which can enhance flood mitigation planning.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13490\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13490","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
High-resolution flood probability mapping using generative machine learning with large-scale synthetic precipitation and inundation data
High-resolution flood probability maps are instrumental for assessing flood risk but are often limited by the availability of historical data. Additionally, producing simulated data needed for creating probabilistic flood maps using physics-based models involves significant computation and time effort, which inhibit its feasibility. To address this gap, this study introduces Precipitation-Flood Depth Generative Pipeline, a novel methodology that leverages generative machine learning to generate large-scale synthetic inundation data to produce probabilistic flood maps. With a focus on Harris County, Texas, Precipitation-Flood Depth Generative Pipeline begins with training a cell-wise depth estimator using a number of precipitation-flood events model with a physics-based model. This cell-wise depth estimator, which emphasizes precipitation-based features, outperforms universal models. Subsequently, the conditional generative adversarial network (CTGAN) is used to conditionally generate synthetic precipitation point cloud, which are filtered using strategic thresholds to align with realistic precipitation patterns. Hence, a precipitation feature pool is constructed for each cell, enabling strategic sampling and the generation of synthetic precipitation events. After generating 10,000 synthetic events, flood probability maps are created for various inundation depths. Validation using similarity and correlation metrics confirms the accuracy of the synthetic depth distributions. The Precipitation-Flood Depth Generative Pipeline provides a scalable solution to generate synthetic flood depth data needed for high-resolution flood probability maps, which can enhance flood mitigation planning.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.