Shuang Wang;He Zhang;Tianxing Wu;Yueyou Zhang;Wei Emma Zhang;Quan Z. Sheng
{"title":"地理分布式数据中心多工作流分配的电力成本最小化","authors":"Shuang Wang;He Zhang;Tianxing Wu;Yueyou Zhang;Wei Emma Zhang;Quan Z. Sheng","doi":"10.1109/TSC.2025.3562325","DOIUrl":null,"url":null,"abstract":"Worldwide, Geo-distributed Data Centers (GDCs) provide computing and storage services for massive workflow applications, resulting in high electricity costs that vary depending on geographical locations and time. How to reduce electricity costs while satisfying the deadline constraints of workflow applications is important in GDCs, which is determined by the execution time of servers, power, and electricity price. Determining the completion time of workflows with different server frequencies can be challenging, especially in scenarios with heterogeneous computing resources in GDCs. Moreover, the electricity price is also different in geographical locations and may change dynamically. To address these challenges, we develop a geo-distributed system architecture and propose an Electricity Cost aware Multiple Workflows Scheduling algorithm (ECMWS) for servers of GDCs with fixed frequency and power. ECMWS comprises four stages, namely workflow sequencing, deadline partitioning, task sequencing, and resource allocation where two graph embedding models and a policy network are constructed to solve the Markov Decision Process (MDP). After statistically calibrating parameters and algorithm components over a comprehensive set of workflow instances, the proposed algorithms are compared with the state-of-the-art methods over two types of workflow instances. The experimental results demonstrate that our proposed algorithm significantly outperforms other algorithms, achieving an improvement of over 15% while maintaining an acceptable computational time.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 3","pages":"1397-1411"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity Cost Minimization for Multi-Workflow Allocation in Geo-Distributed Data Centers\",\"authors\":\"Shuang Wang;He Zhang;Tianxing Wu;Yueyou Zhang;Wei Emma Zhang;Quan Z. Sheng\",\"doi\":\"10.1109/TSC.2025.3562325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Worldwide, Geo-distributed Data Centers (GDCs) provide computing and storage services for massive workflow applications, resulting in high electricity costs that vary depending on geographical locations and time. How to reduce electricity costs while satisfying the deadline constraints of workflow applications is important in GDCs, which is determined by the execution time of servers, power, and electricity price. Determining the completion time of workflows with different server frequencies can be challenging, especially in scenarios with heterogeneous computing resources in GDCs. Moreover, the electricity price is also different in geographical locations and may change dynamically. To address these challenges, we develop a geo-distributed system architecture and propose an Electricity Cost aware Multiple Workflows Scheduling algorithm (ECMWS) for servers of GDCs with fixed frequency and power. ECMWS comprises four stages, namely workflow sequencing, deadline partitioning, task sequencing, and resource allocation where two graph embedding models and a policy network are constructed to solve the Markov Decision Process (MDP). After statistically calibrating parameters and algorithm components over a comprehensive set of workflow instances, the proposed algorithms are compared with the state-of-the-art methods over two types of workflow instances. The experimental results demonstrate that our proposed algorithm significantly outperforms other algorithms, achieving an improvement of over 15% while maintaining an acceptable computational time.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 3\",\"pages\":\"1397-1411\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10972226/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10972226/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Electricity Cost Minimization for Multi-Workflow Allocation in Geo-Distributed Data Centers
Worldwide, Geo-distributed Data Centers (GDCs) provide computing and storage services for massive workflow applications, resulting in high electricity costs that vary depending on geographical locations and time. How to reduce electricity costs while satisfying the deadline constraints of workflow applications is important in GDCs, which is determined by the execution time of servers, power, and electricity price. Determining the completion time of workflows with different server frequencies can be challenging, especially in scenarios with heterogeneous computing resources in GDCs. Moreover, the electricity price is also different in geographical locations and may change dynamically. To address these challenges, we develop a geo-distributed system architecture and propose an Electricity Cost aware Multiple Workflows Scheduling algorithm (ECMWS) for servers of GDCs with fixed frequency and power. ECMWS comprises four stages, namely workflow sequencing, deadline partitioning, task sequencing, and resource allocation where two graph embedding models and a policy network are constructed to solve the Markov Decision Process (MDP). After statistically calibrating parameters and algorithm components over a comprehensive set of workflow instances, the proposed algorithms are compared with the state-of-the-art methods over two types of workflow instances. The experimental results demonstrate that our proposed algorithm significantly outperforms other algorithms, achieving an improvement of over 15% while maintaining an acceptable computational time.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.