扩展超图的图兰问题

IF 1 2区 数学 Q1 MATHEMATICS
Peter Keevash, Noam Lifshitz, Eoin Long, Dor Minzer
{"title":"扩展超图的图兰问题","authors":"Peter Keevash, Noam Lifshitz, Eoin Long, Dor Minzer","doi":"10.1007/s00493-025-00152-4","DOIUrl":null,"url":null,"abstract":"<p>We obtain new results on the Turán number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in Extremal Combinatorics. Firstly, we give general conditions under which the crosscut parameter asymptotically determines the Turán number, thus answering a question of Mubayi and Verstraëte. Secondly, we refine our asymptotic results to obtain several exact results, including proofs of the Huang–Loh–Sudakov conjecture on cross matchings and the Füredi–Jiang–Seiver conjecture on path expansions. We have introduced two major new tools for the proofs of these results. The first of these, Global Hypercontractivity, is used as a ‘black box’ (we present it in a separate paper with several other applications). The second tool, presented in this paper, is a far-reaching extension of the Junta Method, which we develop from a powerful and general technique for finding matchings in hypergraphs under certain pseudorandomness conditions.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"65 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán Problems for Expanded Hypergraphs\",\"authors\":\"Peter Keevash, Noam Lifshitz, Eoin Long, Dor Minzer\",\"doi\":\"10.1007/s00493-025-00152-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain new results on the Turán number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in Extremal Combinatorics. Firstly, we give general conditions under which the crosscut parameter asymptotically determines the Turán number, thus answering a question of Mubayi and Verstraëte. Secondly, we refine our asymptotic results to obtain several exact results, including proofs of the Huang–Loh–Sudakov conjecture on cross matchings and the Füredi–Jiang–Seiver conjecture on path expansions. We have introduced two major new tools for the proofs of these results. The first of these, Global Hypercontractivity, is used as a ‘black box’ (we present it in a separate paper with several other applications). The second tool, presented in this paper, is a far-reaching extension of the Junta Method, which we develop from a powerful and general technique for finding matchings in hypergraphs under certain pseudorandomness conditions.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00152-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00152-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了关于任何有界均匀度超图的图兰数的新结果,该超图是有界均匀度超图的展开图。这些结果在均匀度和边数的基本最优机制上都是渐近尖锐的,并解决了极值组合学中的一些未决问题。首先,我们给出了横切参数渐近地决定图兰数的一般条件,从而回答了穆巴伊和韦斯特拉特的一个问题。其次,我们完善了渐近结果,得到了几个精确结果,包括关于交叉匹配的黄-洛-苏达科夫猜想和关于路径展开的傅雷迪-蒋-塞弗猜想的证明。我们为这些结果的证明引入了两个主要的新工具。第一个工具是全局超收缩性(Global Hypercontractivity),它被用作 "黑箱"(我们在另一篇论文中介绍了它和其他几个应用)。本文介绍的第二种工具是对君达法的深远扩展,我们将其发展为一种强大的通用技术,用于在某些伪随机性条件下寻找超图中的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán Problems for Expanded Hypergraphs

We obtain new results on the Turán number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in Extremal Combinatorics. Firstly, we give general conditions under which the crosscut parameter asymptotically determines the Turán number, thus answering a question of Mubayi and Verstraëte. Secondly, we refine our asymptotic results to obtain several exact results, including proofs of the Huang–Loh–Sudakov conjecture on cross matchings and the Füredi–Jiang–Seiver conjecture on path expansions. We have introduced two major new tools for the proofs of these results. The first of these, Global Hypercontractivity, is used as a ‘black box’ (we present it in a separate paper with several other applications). The second tool, presented in this paper, is a far-reaching extension of the Junta Method, which we develop from a powerful and general technique for finding matchings in hypergraphs under certain pseudorandomness conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信