{"title":"用超导质子探测多体贝尔相关深度","authors":"Ke Wang, Weikang Li, Shibo Xu, Mengyao Hu, Jiachen Chen, Yaozu Wu, Chuanyu Zhang, Feitong Jin, Xuhao Zhu, Yu Gao, Ziqi Tan, Zhengyi Cui, Aosai Zhang, Ning Wang, Yiren Zou, Tingting Li, Fanhao Shen, Jiarun Zhong, Zehang Bao, Zitian Zhu, Zixuan Song, Jinfeng Deng, Hang Dong, Xu Zhang, Pengfei Zhang, Wenjie Jiang, Zhide Lu, Zheng-Zhi Sun, Hekang Li, Qiujiang Guo, Zhen Wang, Patrick Emonts, Jordi Tura, Chao Song, H. Wang, Dong-Ling Deng","doi":"10.1103/physrevx.15.021024","DOIUrl":null,"url":null,"abstract":"Quantum nonlocality describes a stronger form of quantum correlation than that of entanglement. It refutes Einstein’s belief of local realism and is among the most distinctive and enigmatic features of quantum mechanics. It is a crucial resource for achieving quantum advantages in a variety of practical applications, ranging from cryptography and certified random number generation via self-testing to machine learning. Nevertheless, the detection of nonlocality, especially in quantum many-body systems, is notoriously challenging. Here, we report an experimental certification of genuine multipartite Bell-operator correlations, which signal nonlocality in quantum many-body systems, up to 24 qubits with a fully programmable superconducting quantum processor. In particular, we employ energy as a Bell-operator correlation witness and variationally decrease the energy of a many-body system across a hierarchy of thresholds, below which an increasing Bell-operator correlation depth can be certified from experimental data. We variationally prepare the low-energy state of a two-dimensional honeycomb model with 73 qubits and certify its Bell-operator correlations by measuring an energy that surpasses the corresponding classical bound with up to 48 standard deviations. In addition, we variationally prepare a sequence of low-energy states and certify their genuine multipartite Bell-operator correlations up to 24 qubits via energies measured efficiently by parity oscillation and multiple quantum coherence techniques. Our results establish a viable approach for preparing and certifying multipartite Bell-operator correlations, which provide not only a finer benchmark beyond entanglement for quantum devices, but also a valuable guide toward exploiting multipartite Bell correlations in a wide spectrum of practical applications. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"108 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Many-Body Bell Correlation Depth with Superconducting Qubits\",\"authors\":\"Ke Wang, Weikang Li, Shibo Xu, Mengyao Hu, Jiachen Chen, Yaozu Wu, Chuanyu Zhang, Feitong Jin, Xuhao Zhu, Yu Gao, Ziqi Tan, Zhengyi Cui, Aosai Zhang, Ning Wang, Yiren Zou, Tingting Li, Fanhao Shen, Jiarun Zhong, Zehang Bao, Zitian Zhu, Zixuan Song, Jinfeng Deng, Hang Dong, Xu Zhang, Pengfei Zhang, Wenjie Jiang, Zhide Lu, Zheng-Zhi Sun, Hekang Li, Qiujiang Guo, Zhen Wang, Patrick Emonts, Jordi Tura, Chao Song, H. Wang, Dong-Ling Deng\",\"doi\":\"10.1103/physrevx.15.021024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum nonlocality describes a stronger form of quantum correlation than that of entanglement. It refutes Einstein’s belief of local realism and is among the most distinctive and enigmatic features of quantum mechanics. It is a crucial resource for achieving quantum advantages in a variety of practical applications, ranging from cryptography and certified random number generation via self-testing to machine learning. Nevertheless, the detection of nonlocality, especially in quantum many-body systems, is notoriously challenging. Here, we report an experimental certification of genuine multipartite Bell-operator correlations, which signal nonlocality in quantum many-body systems, up to 24 qubits with a fully programmable superconducting quantum processor. In particular, we employ energy as a Bell-operator correlation witness and variationally decrease the energy of a many-body system across a hierarchy of thresholds, below which an increasing Bell-operator correlation depth can be certified from experimental data. We variationally prepare the low-energy state of a two-dimensional honeycomb model with 73 qubits and certify its Bell-operator correlations by measuring an energy that surpasses the corresponding classical bound with up to 48 standard deviations. In addition, we variationally prepare a sequence of low-energy states and certify their genuine multipartite Bell-operator correlations up to 24 qubits via energies measured efficiently by parity oscillation and multiple quantum coherence techniques. Our results establish a viable approach for preparing and certifying multipartite Bell-operator correlations, which provide not only a finer benchmark beyond entanglement for quantum devices, but also a valuable guide toward exploiting multipartite Bell correlations in a wide spectrum of practical applications. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021024\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021024","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Probing Many-Body Bell Correlation Depth with Superconducting Qubits
Quantum nonlocality describes a stronger form of quantum correlation than that of entanglement. It refutes Einstein’s belief of local realism and is among the most distinctive and enigmatic features of quantum mechanics. It is a crucial resource for achieving quantum advantages in a variety of practical applications, ranging from cryptography and certified random number generation via self-testing to machine learning. Nevertheless, the detection of nonlocality, especially in quantum many-body systems, is notoriously challenging. Here, we report an experimental certification of genuine multipartite Bell-operator correlations, which signal nonlocality in quantum many-body systems, up to 24 qubits with a fully programmable superconducting quantum processor. In particular, we employ energy as a Bell-operator correlation witness and variationally decrease the energy of a many-body system across a hierarchy of thresholds, below which an increasing Bell-operator correlation depth can be certified from experimental data. We variationally prepare the low-energy state of a two-dimensional honeycomb model with 73 qubits and certify its Bell-operator correlations by measuring an energy that surpasses the corresponding classical bound with up to 48 standard deviations. In addition, we variationally prepare a sequence of low-energy states and certify their genuine multipartite Bell-operator correlations up to 24 qubits via energies measured efficiently by parity oscillation and multiple quantum coherence techniques. Our results establish a viable approach for preparing and certifying multipartite Bell-operator correlations, which provide not only a finer benchmark beyond entanglement for quantum devices, but also a valuable guide toward exploiting multipartite Bell correlations in a wide spectrum of practical applications. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.