CEP162:纤毛过渡区组装的关键调节因子及其在纤毛病中的意义

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Jun Yin, Jialian Bai, Xiaochong He, Wenjuan He, Hongming Miao, Mengjie Zhang, Zhongying Yu, Bing Ni
{"title":"CEP162:纤毛过渡区组装的关键调节因子及其在纤毛病中的意义","authors":"Jun Yin,&nbsp;Jialian Bai,&nbsp;Xiaochong He,&nbsp;Wenjuan He,&nbsp;Hongming Miao,&nbsp;Mengjie Zhang,&nbsp;Zhongying Yu,&nbsp;Bing Ni","doi":"10.1002/ccs3.70012","DOIUrl":null,"url":null,"abstract":"<p>CEP162, a 162-kDa centrosome protein, is a crucial centrosomal adapter, mediating cell differentiation and polarization. CEP162 maintains mitosis by dynamically stabilizing microtubules. CEP162 promotes the transition zone (TZ) assembly in the basal body through interaction with CEP131, CEP290, and axoneme microtubules as well as the distal centriole. TZ ensures the normal distribution of soluble proteins between the cytoplasm and cilia. It also facilitates retinal development and sperm flagellar motility. However, fluctuations in TZ permeability caused by abnormal expression of CEP162, including truncated mutations and naturally occurring mutations, lead to cilia abnormality and dysfunction in ciliogenesis through the regulation of intraflagellar transport, resulting in retinal degeneration and infertility. LncRNAs can induce SNP events in the CEP162 transcript by altering alternative splicing. Naturally occurring mutations are closely linked to retinal ciliopathy and diabetic retinopathy. This review summarizes the latest research progress to better understand the biology and pathophysiology of CEP162 and the clinical manifestations caused by CEP162 variants.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70012","citationCount":"0","resultStr":"{\"title\":\"CEP162: A critical regulator of ciliary transition zone assembly and its implications in ciliopathies\",\"authors\":\"Jun Yin,&nbsp;Jialian Bai,&nbsp;Xiaochong He,&nbsp;Wenjuan He,&nbsp;Hongming Miao,&nbsp;Mengjie Zhang,&nbsp;Zhongying Yu,&nbsp;Bing Ni\",\"doi\":\"10.1002/ccs3.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CEP162, a 162-kDa centrosome protein, is a crucial centrosomal adapter, mediating cell differentiation and polarization. CEP162 maintains mitosis by dynamically stabilizing microtubules. CEP162 promotes the transition zone (TZ) assembly in the basal body through interaction with CEP131, CEP290, and axoneme microtubules as well as the distal centriole. TZ ensures the normal distribution of soluble proteins between the cytoplasm and cilia. It also facilitates retinal development and sperm flagellar motility. However, fluctuations in TZ permeability caused by abnormal expression of CEP162, including truncated mutations and naturally occurring mutations, lead to cilia abnormality and dysfunction in ciliogenesis through the regulation of intraflagellar transport, resulting in retinal degeneration and infertility. LncRNAs can induce SNP events in the CEP162 transcript by altering alternative splicing. Naturally occurring mutations are closely linked to retinal ciliopathy and diabetic retinopathy. This review summarizes the latest research progress to better understand the biology and pathophysiology of CEP162 and the clinical manifestations caused by CEP162 variants.</p>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70012\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

CEP162是一种分子量为162 kda的中心体蛋白,是一个重要的中心体适配器,介导细胞分化和极化。CEP162通过动态稳定微管维持有丝分裂。CEP162通过与CEP131、CEP290、轴突微管以及远端中心粒的相互作用促进基底体内的过渡区(TZ)组装。TZ保证了可溶性蛋白在细胞质和纤毛之间的正态分布。它还促进视网膜发育和精子鞭毛运动。然而,CEP162的异常表达引起的TZ通透性波动,包括截断突变和自然突变,通过调节鞭毛内运输导致纤毛异常和纤毛发生功能障碍,导致视网膜变性和不育。LncRNAs可以通过改变选择性剪接诱导CEP162转录物中的SNP事件。自然发生的突变与视网膜纤毛病和糖尿病视网膜病变密切相关。为了更好地了解CEP162的生物学和病理生理以及CEP162变异引起的临床表现,本文对最新的研究进展进行综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CEP162: A critical regulator of ciliary transition zone assembly and its implications in ciliopathies

CEP162: A critical regulator of ciliary transition zone assembly and its implications in ciliopathies

CEP162, a 162-kDa centrosome protein, is a crucial centrosomal adapter, mediating cell differentiation and polarization. CEP162 maintains mitosis by dynamically stabilizing microtubules. CEP162 promotes the transition zone (TZ) assembly in the basal body through interaction with CEP131, CEP290, and axoneme microtubules as well as the distal centriole. TZ ensures the normal distribution of soluble proteins between the cytoplasm and cilia. It also facilitates retinal development and sperm flagellar motility. However, fluctuations in TZ permeability caused by abnormal expression of CEP162, including truncated mutations and naturally occurring mutations, lead to cilia abnormality and dysfunction in ciliogenesis through the regulation of intraflagellar transport, resulting in retinal degeneration and infertility. LncRNAs can induce SNP events in the CEP162 transcript by altering alternative splicing. Naturally occurring mutations are closely linked to retinal ciliopathy and diabetic retinopathy. This review summarizes the latest research progress to better understand the biology and pathophysiology of CEP162 and the clinical manifestations caused by CEP162 variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信