{"title":"白藜芦醇-一种草本免疫调节剂,通过调节Foxo1-Foxp3通路改善实验性自身免疫性重症肌无力","authors":"Heyun Cheng, Yunan Shan, Xiaoyue Shen, Yanbin Li","doi":"10.1002/jbt.70265","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Resveratrol (RES), extracted from traditional Chinese medicinal plants, demonstrates notable potential in managing autoimmune diseases by modulating multiple pathways and targeting various immune cell subsets with minimal adverse effects. Current treatments for a novel form of myasthenia gravis (MG) face challenges such as inconsistent efficacy and numerous side effects. The exact mechanisms by which RES affects MG progression remain unclear. To investigate RES's impact on MG, an experimental model was created using <i>Lewis female mice</i> immunized with an antigenic emulsion from the 97–116 region of the <i>rat AChR alpha subunit</i> (R97-116 peptide). RES was administered orally in varying doses. Following treatment, the experimental autoimmune myasthenia gravis (EAMG) model was assessed through several metrics, including EAMG score, autoantibody levels, and antibody affinity via ELISA. Network pharmacology was employed to construct the RES action pathway. Validation of RES effects on immune cell pathways in immune organs was performed using Western blot, real-time PCR, immunofluorescence, and immunohistochemistry, with dendritic cells (DCs) in vitro confirming the pathway. Flow cytometry was used for immunophenotyping. RES mitigated EAMG clinical symptoms and reduced both autoantibody content and affinity in serum. Network pharmacology identified the Foxo1/Foxp3 pathway as integral to RES's therapeutic effects on MG. In the RES-treated group, Foxo1 and Foxp3 expression levels were elevated in the spleen, lymph nodes, and thymus. In vitro experiments indicated decreased Foxp3 expression following Foxo1 inhibition in DCs. Flow cytometry revealed an increase in regulatory DCs, reduced DC activation, and diminished lymphocyte proliferation stimulation. Concurrently, Treg levels increased while germinal center B cells decreased. RES can serve as a potential drug for the treatment of MG, as it can regulate DC cells and other immune cells by affecting the Foxo1/Foxp3 pathway.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resveratrol—A Herbal Immunomodulator, Ameliorates Experimental Autoimmune Myasthenia Gravis by Regulating the Foxo1-Foxp3 Pathway\",\"authors\":\"Heyun Cheng, Yunan Shan, Xiaoyue Shen, Yanbin Li\",\"doi\":\"10.1002/jbt.70265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Resveratrol (RES), extracted from traditional Chinese medicinal plants, demonstrates notable potential in managing autoimmune diseases by modulating multiple pathways and targeting various immune cell subsets with minimal adverse effects. Current treatments for a novel form of myasthenia gravis (MG) face challenges such as inconsistent efficacy and numerous side effects. The exact mechanisms by which RES affects MG progression remain unclear. To investigate RES's impact on MG, an experimental model was created using <i>Lewis female mice</i> immunized with an antigenic emulsion from the 97–116 region of the <i>rat AChR alpha subunit</i> (R97-116 peptide). RES was administered orally in varying doses. Following treatment, the experimental autoimmune myasthenia gravis (EAMG) model was assessed through several metrics, including EAMG score, autoantibody levels, and antibody affinity via ELISA. Network pharmacology was employed to construct the RES action pathway. Validation of RES effects on immune cell pathways in immune organs was performed using Western blot, real-time PCR, immunofluorescence, and immunohistochemistry, with dendritic cells (DCs) in vitro confirming the pathway. Flow cytometry was used for immunophenotyping. RES mitigated EAMG clinical symptoms and reduced both autoantibody content and affinity in serum. Network pharmacology identified the Foxo1/Foxp3 pathway as integral to RES's therapeutic effects on MG. In the RES-treated group, Foxo1 and Foxp3 expression levels were elevated in the spleen, lymph nodes, and thymus. In vitro experiments indicated decreased Foxp3 expression following Foxo1 inhibition in DCs. Flow cytometry revealed an increase in regulatory DCs, reduced DC activation, and diminished lymphocyte proliferation stimulation. Concurrently, Treg levels increased while germinal center B cells decreased. RES can serve as a potential drug for the treatment of MG, as it can regulate DC cells and other immune cells by affecting the Foxo1/Foxp3 pathway.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70265\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70265","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Resveratrol—A Herbal Immunomodulator, Ameliorates Experimental Autoimmune Myasthenia Gravis by Regulating the Foxo1-Foxp3 Pathway
Resveratrol (RES), extracted from traditional Chinese medicinal plants, demonstrates notable potential in managing autoimmune diseases by modulating multiple pathways and targeting various immune cell subsets with minimal adverse effects. Current treatments for a novel form of myasthenia gravis (MG) face challenges such as inconsistent efficacy and numerous side effects. The exact mechanisms by which RES affects MG progression remain unclear. To investigate RES's impact on MG, an experimental model was created using Lewis female mice immunized with an antigenic emulsion from the 97–116 region of the rat AChR alpha subunit (R97-116 peptide). RES was administered orally in varying doses. Following treatment, the experimental autoimmune myasthenia gravis (EAMG) model was assessed through several metrics, including EAMG score, autoantibody levels, and antibody affinity via ELISA. Network pharmacology was employed to construct the RES action pathway. Validation of RES effects on immune cell pathways in immune organs was performed using Western blot, real-time PCR, immunofluorescence, and immunohistochemistry, with dendritic cells (DCs) in vitro confirming the pathway. Flow cytometry was used for immunophenotyping. RES mitigated EAMG clinical symptoms and reduced both autoantibody content and affinity in serum. Network pharmacology identified the Foxo1/Foxp3 pathway as integral to RES's therapeutic effects on MG. In the RES-treated group, Foxo1 and Foxp3 expression levels were elevated in the spleen, lymph nodes, and thymus. In vitro experiments indicated decreased Foxp3 expression following Foxo1 inhibition in DCs. Flow cytometry revealed an increase in regulatory DCs, reduced DC activation, and diminished lymphocyte proliferation stimulation. Concurrently, Treg levels increased while germinal center B cells decreased. RES can serve as a potential drug for the treatment of MG, as it can regulate DC cells and other immune cells by affecting the Foxo1/Foxp3 pathway.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.