有机微腔中分子取向连续调谐强激子-光子耦合

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yicheng Liu, Russell J. Holmes
{"title":"有机微腔中分子取向连续调谐强激子-光子耦合","authors":"Yicheng Liu,&nbsp;Russell J. Holmes","doi":"10.1002/adom.202403135","DOIUrl":null,"url":null,"abstract":"<p>Exciton-polaritons in organic microcavities are applied in devices including lasers, light-emitting devices, and photodetectors, as well as in structures capable of tuning exciton kinetics and energy transfer. To enable a broader tailoring of polariton properties, it is important to develop means to better control molecular orientation and tune the intensity of the exciton–photon interaction. Vapor-processed, glassy organic thin films are previously shown to have tunable molecular orientation as evidenced by phenomena including birefringence and transition dipole moment (TDM) alignment. Here, this tunability in TDM orientation with thin film processing conditions is exploited to continuously vary the interaction between the exciton and confined cavity photon mode. By embedding a thin film of 4,4′-bis[(N-carbazole)styryl]biphenyl (BSB-Cz) in a metal-reflector microcavity, ultrastrong coupling and hybridization of multiple electronic transitions of BSB-Cz are demonstrated with a common cavity mode. Increasing the temperature during BSB-Cz deposition tunes the TDM orientation from predominantly in-plane to random to slightly vertical. This leads to a corresponding ≈30% variation in the associated Rabi splitting, consistent with theoretical predictions. This work demonstrates a means to continuously tune coupling strength from a materials perspective while also providing a handle to tune orientation disorder in thin film.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 12","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403135","citationCount":"0","resultStr":"{\"title\":\"Continuously Tuning Strong Exciton–Photon Coupling via Molecular Orientation in Organic Microcavities\",\"authors\":\"Yicheng Liu,&nbsp;Russell J. Holmes\",\"doi\":\"10.1002/adom.202403135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exciton-polaritons in organic microcavities are applied in devices including lasers, light-emitting devices, and photodetectors, as well as in structures capable of tuning exciton kinetics and energy transfer. To enable a broader tailoring of polariton properties, it is important to develop means to better control molecular orientation and tune the intensity of the exciton–photon interaction. Vapor-processed, glassy organic thin films are previously shown to have tunable molecular orientation as evidenced by phenomena including birefringence and transition dipole moment (TDM) alignment. Here, this tunability in TDM orientation with thin film processing conditions is exploited to continuously vary the interaction between the exciton and confined cavity photon mode. By embedding a thin film of 4,4′-bis[(N-carbazole)styryl]biphenyl (BSB-Cz) in a metal-reflector microcavity, ultrastrong coupling and hybridization of multiple electronic transitions of BSB-Cz are demonstrated with a common cavity mode. Increasing the temperature during BSB-Cz deposition tunes the TDM orientation from predominantly in-plane to random to slightly vertical. This leads to a corresponding ≈30% variation in the associated Rabi splitting, consistent with theoretical predictions. This work demonstrates a means to continuously tune coupling strength from a materials perspective while also providing a handle to tune orientation disorder in thin film.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403135\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机微腔中的激子极化子应用于激光器、发光器件和光电探测器等器件,以及能够调节激子动力学和能量转移的结构。为了能够更广泛地调整极化子的性质,开发更好地控制分子取向和调节激子-光子相互作用强度的方法是很重要的。蒸汽处理的玻璃有机薄膜先前被证明具有可调的分子取向,包括双折射和跃迁偶极矩(TDM)排列现象。在这里,利用薄膜加工条件下TDM取向的可调性来连续改变激子和受限腔光子模式之间的相互作用。通过将4,4′-双[(n -咔唑)苯基]联苯(BSB-Cz)薄膜嵌入金属-反射器微腔中,在共腔模式下证明了BSB-Cz的多重电子跃迁的超强耦合和杂化。在BSB-Cz沉积过程中,增加温度会使TDM的取向从主要的平面内转向随机,再到略微垂直。这导致相关的拉比分裂相应的≈30%的变化,与理论预测一致。这项工作展示了一种从材料角度连续调整耦合强度的方法,同时也为调整薄膜中的取向紊乱提供了一个处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Continuously Tuning Strong Exciton–Photon Coupling via Molecular Orientation in Organic Microcavities

Continuously Tuning Strong Exciton–Photon Coupling via Molecular Orientation in Organic Microcavities

Exciton-polaritons in organic microcavities are applied in devices including lasers, light-emitting devices, and photodetectors, as well as in structures capable of tuning exciton kinetics and energy transfer. To enable a broader tailoring of polariton properties, it is important to develop means to better control molecular orientation and tune the intensity of the exciton–photon interaction. Vapor-processed, glassy organic thin films are previously shown to have tunable molecular orientation as evidenced by phenomena including birefringence and transition dipole moment (TDM) alignment. Here, this tunability in TDM orientation with thin film processing conditions is exploited to continuously vary the interaction between the exciton and confined cavity photon mode. By embedding a thin film of 4,4′-bis[(N-carbazole)styryl]biphenyl (BSB-Cz) in a metal-reflector microcavity, ultrastrong coupling and hybridization of multiple electronic transitions of BSB-Cz are demonstrated with a common cavity mode. Increasing the temperature during BSB-Cz deposition tunes the TDM orientation from predominantly in-plane to random to slightly vertical. This leads to a corresponding ≈30% variation in the associated Rabi splitting, consistent with theoretical predictions. This work demonstrates a means to continuously tune coupling strength from a materials perspective while also providing a handle to tune orientation disorder in thin film.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信