基于自组织工艺的双折射玻璃雕刻准线性纳米光栅超表面在大孔径高功率激光中的应用

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nathan J. Ray, Hoang T. Nguyen, Eyal Feigenbaum
{"title":"基于自组织工艺的双折射玻璃雕刻准线性纳米光栅超表面在大孔径高功率激光中的应用","authors":"Nathan J. Ray,&nbsp;Hoang T. Nguyen,&nbsp;Eyal Feigenbaum","doi":"10.1002/adom.202403169","DOIUrl":null,"url":null,"abstract":"<p>All-glass metasurface “nanograting” structures that exhibit birefringence in the formed layer are reported. The key enabler of this work is ion beam processing at an angle sufficiently off-normal incidence, inducing self-assembly of a deposited metal layer into quasi-linear metallic features that can function as an etching mask. As a result, a fused silica metasurface, monolithic to the underlying substrate, is demonstrated at 375 nm wavelength to exhibit a phase delay angle of 30° between the principal axes. The capability of an angled etch mask replenishment process is also demonstrated for achieving deeper etch depth and for increasing the grating period, another first – to the best of the knowledge. This is the first display of a technology capable of fabricating glass-engraved near-linear grating structure with a feature-to-feature period as small as 118.6 nm. Furthermore, this technology has the potential to generate grating-like structures with periods as small as 12.4 nm, as demonstrated here with reactive ion beam processing assisted mask assembly. These structures are shown to have reflectivity &lt; 0.4% across the wavelength band 350 nm – 1000 nm. Such a technology can enable laser-durable grating structures for the deep-UV and even down to soft X-ray wavelengths.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 12","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birefringent Glass-Engraved Quasi-Linear Nanograting Metasurface Based on Self-Organizing Process for Large Aperture High Power Laser Applications\",\"authors\":\"Nathan J. Ray,&nbsp;Hoang T. Nguyen,&nbsp;Eyal Feigenbaum\",\"doi\":\"10.1002/adom.202403169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-glass metasurface “nanograting” structures that exhibit birefringence in the formed layer are reported. The key enabler of this work is ion beam processing at an angle sufficiently off-normal incidence, inducing self-assembly of a deposited metal layer into quasi-linear metallic features that can function as an etching mask. As a result, a fused silica metasurface, monolithic to the underlying substrate, is demonstrated at 375 nm wavelength to exhibit a phase delay angle of 30° between the principal axes. The capability of an angled etch mask replenishment process is also demonstrated for achieving deeper etch depth and for increasing the grating period, another first – to the best of the knowledge. This is the first display of a technology capable of fabricating glass-engraved near-linear grating structure with a feature-to-feature period as small as 118.6 nm. Furthermore, this technology has the potential to generate grating-like structures with periods as small as 12.4 nm, as demonstrated here with reactive ion beam processing assisted mask assembly. These structures are shown to have reflectivity &lt; 0.4% across the wavelength band 350 nm – 1000 nm. Such a technology can enable laser-durable grating structures for the deep-UV and even down to soft X-ray wavelengths.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403169\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403169","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

报道了在形成层中表现出双折射的全玻璃超表面“纳米光栅”结构。这项工作的关键促成因素是离子束以足够偏离正常入射的角度进行处理,诱导沉积金属层自组装成准线性金属特征,可以作为蚀刻掩膜。结果表明,在375 nm波长下,一个单片的熔融二氧化硅超表面在主轴之间表现出30°的相位延迟角。角度蚀刻掩模补充工艺的能力也被证明可以实现更深的蚀刻深度和增加光栅周期,这是另一个第一次-尽其所知。这是首次展示能够制造玻璃雕刻近线性光栅结构的技术,其特征到特征周期小至118.6 nm。此外,该技术有潜力产生周期小至12.4 nm的光栅状结构,如图所示,反应离子束处理辅助掩膜组装。这些结构被证明具有反射率<;在350nm - 1000nm波长范围内的0.4%。这种技术可以使激光耐用的光栅结构适用于深紫外甚至软x射线波长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Birefringent Glass-Engraved Quasi-Linear Nanograting Metasurface Based on Self-Organizing Process for Large Aperture High Power Laser Applications

Birefringent Glass-Engraved Quasi-Linear Nanograting Metasurface Based on Self-Organizing Process for Large Aperture High Power Laser Applications

All-glass metasurface “nanograting” structures that exhibit birefringence in the formed layer are reported. The key enabler of this work is ion beam processing at an angle sufficiently off-normal incidence, inducing self-assembly of a deposited metal layer into quasi-linear metallic features that can function as an etching mask. As a result, a fused silica metasurface, monolithic to the underlying substrate, is demonstrated at 375 nm wavelength to exhibit a phase delay angle of 30° between the principal axes. The capability of an angled etch mask replenishment process is also demonstrated for achieving deeper etch depth and for increasing the grating period, another first – to the best of the knowledge. This is the first display of a technology capable of fabricating glass-engraved near-linear grating structure with a feature-to-feature period as small as 118.6 nm. Furthermore, this technology has the potential to generate grating-like structures with periods as small as 12.4 nm, as demonstrated here with reactive ion beam processing assisted mask assembly. These structures are shown to have reflectivity < 0.4% across the wavelength band 350 nm – 1000 nm. Such a technology can enable laser-durable grating structures for the deep-UV and even down to soft X-ray wavelengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信