一类从\(L_p\)到\(L_q\)的积分算子的有界性准则 \(1
IF 1.6 3区 数学 Q1 MATHEMATICS
Ryskul Oinarov, Ainur Temirkhanova, Aigerim Kalybay
{"title":"一类从\\(L_p\\)到\\(L_q\\)的积分算子的有界性准则 \\(1<q<p<\\infty \\)","authors":"Ryskul Oinarov,&nbsp;Ainur Temirkhanova,&nbsp;Aigerim Kalybay","doi":"10.1007/s13324-025-01053-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider integral operators with non-negative kernels that satisfy conditions less restrictive than those studied earlier. We establish criteria for the boundedness of these operators in Lebesgue spaces.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criteria for boundedness of a class of integral operators from \\\\(L_p\\\\) to \\\\(L_q\\\\) for \\\\(1<q<p<\\\\infty \\\\)\",\"authors\":\"Ryskul Oinarov,&nbsp;Ainur Temirkhanova,&nbsp;Aigerim Kalybay\",\"doi\":\"10.1007/s13324-025-01053-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider integral operators with non-negative kernels that satisfy conditions less restrictive than those studied earlier. We establish criteria for the boundedness of these operators in Lebesgue spaces.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01053-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01053-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了具有非负核的积分算子,这些算子满足的条件比之前研究的条件限制性要小。我们建立了这些算子在 Lebesgue 空间中的有界性标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criteria for boundedness of a class of integral operators from \(L_p\) to \(L_q\) for \(1

In this paper, we consider integral operators with non-negative kernels that satisfy conditions less restrictive than those studied earlier. We establish criteria for the boundedness of these operators in Lebesgue spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享

联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信