{"title":"不同锌层厚度的T2/Q235复合材料冲击焊接试验与数值模拟研究","authors":"Xingxing Cheng, Bing Xue, Jiangliang Li, Moujin Lin, Junqi Zhou, Lu Zhang, Jichun Wang, Pengfei Gao","doi":"10.1007/s12289-025-01903-w","DOIUrl":null,"url":null,"abstract":"<div><p>The single-stage light gas gun has been employed to drive the T2 copper welding on Q235 carbon steel. The effect of the Zn interlayer on the microstructure at the interface of impact welded the T2 copper/Q235 carbon steel composite has been studied by both experiment and numerical simulation. The simulation results are mainly consistent with the results of the experiment. The 100 µm Zn interlayer can broaden the lower limit of the T2/Q235 weld window, resulting in a 3.11% reduction in energy dissipation during the impact welding. While the 25 µm Zn interlayer achieves a reduction of up to 11.6%. As the thickness of the Zn interlayer diminishes, the plastic strain, pressure, and temperature of the flyer plate gradually increase, allowing for the modulation of welding parameters through varying Zn interlayer thicknesses.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical simulation study on T2/Q235 composite impact welded with various thickness of Zn interlayer\",\"authors\":\"Xingxing Cheng, Bing Xue, Jiangliang Li, Moujin Lin, Junqi Zhou, Lu Zhang, Jichun Wang, Pengfei Gao\",\"doi\":\"10.1007/s12289-025-01903-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The single-stage light gas gun has been employed to drive the T2 copper welding on Q235 carbon steel. The effect of the Zn interlayer on the microstructure at the interface of impact welded the T2 copper/Q235 carbon steel composite has been studied by both experiment and numerical simulation. The simulation results are mainly consistent with the results of the experiment. The 100 µm Zn interlayer can broaden the lower limit of the T2/Q235 weld window, resulting in a 3.11% reduction in energy dissipation during the impact welding. While the 25 µm Zn interlayer achieves a reduction of up to 11.6%. As the thickness of the Zn interlayer diminishes, the plastic strain, pressure, and temperature of the flyer plate gradually increase, allowing for the modulation of welding parameters through varying Zn interlayer thicknesses.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01903-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01903-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Experimental and numerical simulation study on T2/Q235 composite impact welded with various thickness of Zn interlayer
The single-stage light gas gun has been employed to drive the T2 copper welding on Q235 carbon steel. The effect of the Zn interlayer on the microstructure at the interface of impact welded the T2 copper/Q235 carbon steel composite has been studied by both experiment and numerical simulation. The simulation results are mainly consistent with the results of the experiment. The 100 µm Zn interlayer can broaden the lower limit of the T2/Q235 weld window, resulting in a 3.11% reduction in energy dissipation during the impact welding. While the 25 µm Zn interlayer achieves a reduction of up to 11.6%. As the thickness of the Zn interlayer diminishes, the plastic strain, pressure, and temperature of the flyer plate gradually increase, allowing for the modulation of welding parameters through varying Zn interlayer thicknesses.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.