超越孤子:肿瘤-免疫系统相互作用数学模型的变形孤子解

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Z. Navickas , R. Marcinkevicius , I. Telksniene , T. Telksnys , R. Mickevicius , M. Ragulskis
{"title":"超越孤子:肿瘤-免疫系统相互作用数学模型的变形孤子解","authors":"Z. Navickas ,&nbsp;R. Marcinkevicius ,&nbsp;I. Telksniene ,&nbsp;T. Telksnys ,&nbsp;R. Mickevicius ,&nbsp;M. Ragulskis","doi":"10.1016/j.chaos.2025.116419","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of the deformed solitary solutions is introduced in this paper. It is demonstrated that deformed solitary solutions to nonlinear differential equations can exist even if those equations do not admit classical solitary solutions. The proposed technique for the derivation of deformed solitary solutions does yield not only the analytical closed-form structure of the solution, but also automatically derives the conditions for its existence in the space of system parameters. Analytical and computational techniques are used to derive and to illustrate deformed kink solitary solutions to the mathematical model for tumor–immune system interactions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116419"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond solitons: Deformed solitary solutions to the mathematical model of tumor–immune system interactions\",\"authors\":\"Z. Navickas ,&nbsp;R. Marcinkevicius ,&nbsp;I. Telksniene ,&nbsp;T. Telksnys ,&nbsp;R. Mickevicius ,&nbsp;M. Ragulskis\",\"doi\":\"10.1016/j.chaos.2025.116419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The concept of the deformed solitary solutions is introduced in this paper. It is demonstrated that deformed solitary solutions to nonlinear differential equations can exist even if those equations do not admit classical solitary solutions. The proposed technique for the derivation of deformed solitary solutions does yield not only the analytical closed-form structure of the solution, but also automatically derives the conditions for its existence in the space of system parameters. Analytical and computational techniques are used to derive and to illustrate deformed kink solitary solutions to the mathematical model for tumor–immune system interactions.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116419\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004321\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004321","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了变形孤立解的概念。证明了非线性微分方程即使不允许经典孤立解,也可以存在变形孤立解。所提出的变形孤立解的求导方法不仅可以得到解的解析闭型结构,而且可以自动导出其在系统参数空间中的存在条件。分析和计算技术用于推导和说明肿瘤-免疫系统相互作用数学模型的变形扭结孤立解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond solitons: Deformed solitary solutions to the mathematical model of tumor–immune system interactions
The concept of the deformed solitary solutions is introduced in this paper. It is demonstrated that deformed solitary solutions to nonlinear differential equations can exist even if those equations do not admit classical solitary solutions. The proposed technique for the derivation of deformed solitary solutions does yield not only the analytical closed-form structure of the solution, but also automatically derives the conditions for its existence in the space of system parameters. Analytical and computational techniques are used to derive and to illustrate deformed kink solitary solutions to the mathematical model for tumor–immune system interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信