José Carlos Díaz-Ramos, Juan Manuel Lorenzo-Naveiro
{"title":"非紧型对称空间上的余维二极齐次叶","authors":"José Carlos Díaz-Ramos, Juan Manuel Lorenzo-Naveiro","doi":"10.1016/j.aim.2025.110295","DOIUrl":null,"url":null,"abstract":"<div><div>We classify homogeneous polar foliations of codimension two on irreducible symmetric spaces of noncompact type up to orbit equivalence. Any such foliation is either hyperpolar or the canonical extension of a polar homogeneous foliation on a rank one symmetric space.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110295"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codimension two polar homogeneous foliations on symmetric spaces of noncompact type\",\"authors\":\"José Carlos Díaz-Ramos, Juan Manuel Lorenzo-Naveiro\",\"doi\":\"10.1016/j.aim.2025.110295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We classify homogeneous polar foliations of codimension two on irreducible symmetric spaces of noncompact type up to orbit equivalence. Any such foliation is either hyperpolar or the canonical extension of a polar homogeneous foliation on a rank one symmetric space.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 110295\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001938\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001938","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Codimension two polar homogeneous foliations on symmetric spaces of noncompact type
We classify homogeneous polar foliations of codimension two on irreducible symmetric spaces of noncompact type up to orbit equivalence. Any such foliation is either hyperpolar or the canonical extension of a polar homogeneous foliation on a rank one symmetric space.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.