Frieze的用法和样例

IF 1.5 1区 数学 Q1 MATHEMATICS
Ian Short, Matty van Son, Andrei Zabolotskii
{"title":"Frieze的用法和样例","authors":"Ian Short,&nbsp;Matty van Son,&nbsp;Andrei Zabolotskii","doi":"10.1016/j.aim.2025.110269","DOIUrl":null,"url":null,"abstract":"<div><div>Frieze patterns have attracted significant attention recently, motivated by their relationship with cluster algebras. A longstanding open problem has been to provide a combinatorial model for frieze patterns over the ring of integers modulo <em>N</em> akin to Conway and Coxeter's celebrated model for positive integer frieze patterns. Here we solve this problem using the Farey complex of the ring of integers modulo <em>N</em>; in fact, using more general Farey complexes we provide combinatorial models for frieze patterns over any rings whatsoever.</div><div>Our strategy generalises that of the first author and of Morier-Genoud et al. for integers and that of Felikson et al. for Eisenstein integers. We also generalise results of Singerman and Strudwick on diameters of Farey graphs, we recover a theorem of Morier-Genoud on enumerating friezes over finite fields, and we classify those frieze patterns modulo <em>N</em> that lift to frieze patterns over the integers in terms of the topology of the corresponding Farey complexes.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110269"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frieze patterns and Farey complexes\",\"authors\":\"Ian Short,&nbsp;Matty van Son,&nbsp;Andrei Zabolotskii\",\"doi\":\"10.1016/j.aim.2025.110269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Frieze patterns have attracted significant attention recently, motivated by their relationship with cluster algebras. A longstanding open problem has been to provide a combinatorial model for frieze patterns over the ring of integers modulo <em>N</em> akin to Conway and Coxeter's celebrated model for positive integer frieze patterns. Here we solve this problem using the Farey complex of the ring of integers modulo <em>N</em>; in fact, using more general Farey complexes we provide combinatorial models for frieze patterns over any rings whatsoever.</div><div>Our strategy generalises that of the first author and of Morier-Genoud et al. for integers and that of Felikson et al. for Eisenstein integers. We also generalise results of Singerman and Strudwick on diameters of Farey graphs, we recover a theorem of Morier-Genoud on enumerating friezes over finite fields, and we classify those frieze patterns modulo <em>N</em> that lift to frieze patterns over the integers in terms of the topology of the corresponding Farey complexes.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 110269\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001677\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001677","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Frieze图案最近引起了极大的关注,其动机是与簇代数的关系。一个长期存在的开放问题是为模N的整数环上的frieze图案提供一个组合模型,类似于Conway和Coxeter著名的正整数frieze图案模型。这里我们用以N为模的整数环的Farey复形来解决这个问题;事实上,使用更一般的Farey复合体,我们为任何环上的frieze图案提供了组合模型。我们的策略推广了第一作者和Morier-Genoud等人的整数策略以及Felikson等人的整数策略。我们还推广了Singerman和Strudwick关于Farey图直径的结果,恢复了Morier-Genoud关于在有限域上枚举frieze的定理,并根据相应的Farey复形的拓扑结构将那些在整数上提升为frieze模式的frieze模式分类为模N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frieze patterns and Farey complexes
Frieze patterns have attracted significant attention recently, motivated by their relationship with cluster algebras. A longstanding open problem has been to provide a combinatorial model for frieze patterns over the ring of integers modulo N akin to Conway and Coxeter's celebrated model for positive integer frieze patterns. Here we solve this problem using the Farey complex of the ring of integers modulo N; in fact, using more general Farey complexes we provide combinatorial models for frieze patterns over any rings whatsoever.
Our strategy generalises that of the first author and of Morier-Genoud et al. for integers and that of Felikson et al. for Eisenstein integers. We also generalise results of Singerman and Strudwick on diameters of Farey graphs, we recover a theorem of Morier-Genoud on enumerating friezes over finite fields, and we classify those frieze patterns modulo N that lift to frieze patterns over the integers in terms of the topology of the corresponding Farey complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信