Qiwen Shi , Tao Zhou , Yuqi Zhou , Zhi-Hao Wang , Yao-Jie Xue , Ya-Jing Chen
{"title":"发现四环1,2,4-三唑啉融合二苯并[b,f][1,4]恶氮平是一种疗效好、毒性低的有效抗结直肠癌药物","authors":"Qiwen Shi , Tao Zhou , Yuqi Zhou , Zhi-Hao Wang , Yao-Jie Xue , Ya-Jing Chen","doi":"10.1016/j.bmc.2025.118203","DOIUrl":null,"url":null,"abstract":"<div><div>A series of tetracyclic 1,2,4-triazoline-fused dibenzo[<em>b,f</em>][1,4]oxazepines were evaluated as novel anti-tumor agents. MTT assay conducted in four human cancer cell lines (SW620, A549, MCF-7, HepG2) showed that 1,2,4-triazoline-fused dibenzo[<em>b,f</em>][1,4]oxazepine decorated by a methyl group on the benzene ring of 1,2,4-triazoline moiety exhibited a superior antiproliferative activity against SW620 cells with a IC<sub>50</sub> value of 0.86 μM. The above compound was thus chosen for further investigation on its anti-colorectal cancer (CRC) effect, and displayed inhibitory effects on the proliferation of HCT116 and CT26 cells with IC<sub>50</sub> values of 0.96 μM and 1.71 μM, respectively. Furthermore, this compound could effectively suppress colony formation and induce cell cycle arrest and apoptosis in SW620 cells. Western blot analysis demonstrated that it exerted the anti-tumor activity through blocking the PI3K-AKT signaling pathway. Next, we examined its <em>in vivo</em> anti-tumor activity by establishing a subcutaneous CT26 xenograft model, and found that it significantly reduced the tumor sizes with limited toxicity. Collectively, these findings suggest that this compound could be utilized as a promising candidate against CRC.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"125 ","pages":"Article 118203"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of tetracyclic 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepine as a potent anti-colorectal cancer agent with good efficacy and low toxicity\",\"authors\":\"Qiwen Shi , Tao Zhou , Yuqi Zhou , Zhi-Hao Wang , Yao-Jie Xue , Ya-Jing Chen\",\"doi\":\"10.1016/j.bmc.2025.118203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A series of tetracyclic 1,2,4-triazoline-fused dibenzo[<em>b,f</em>][1,4]oxazepines were evaluated as novel anti-tumor agents. MTT assay conducted in four human cancer cell lines (SW620, A549, MCF-7, HepG2) showed that 1,2,4-triazoline-fused dibenzo[<em>b,f</em>][1,4]oxazepine decorated by a methyl group on the benzene ring of 1,2,4-triazoline moiety exhibited a superior antiproliferative activity against SW620 cells with a IC<sub>50</sub> value of 0.86 μM. The above compound was thus chosen for further investigation on its anti-colorectal cancer (CRC) effect, and displayed inhibitory effects on the proliferation of HCT116 and CT26 cells with IC<sub>50</sub> values of 0.96 μM and 1.71 μM, respectively. Furthermore, this compound could effectively suppress colony formation and induce cell cycle arrest and apoptosis in SW620 cells. Western blot analysis demonstrated that it exerted the anti-tumor activity through blocking the PI3K-AKT signaling pathway. Next, we examined its <em>in vivo</em> anti-tumor activity by establishing a subcutaneous CT26 xenograft model, and found that it significantly reduced the tumor sizes with limited toxicity. Collectively, these findings suggest that this compound could be utilized as a promising candidate against CRC.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"125 \",\"pages\":\"Article 118203\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089625001440\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625001440","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of tetracyclic 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepine as a potent anti-colorectal cancer agent with good efficacy and low toxicity
A series of tetracyclic 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepines were evaluated as novel anti-tumor agents. MTT assay conducted in four human cancer cell lines (SW620, A549, MCF-7, HepG2) showed that 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepine decorated by a methyl group on the benzene ring of 1,2,4-triazoline moiety exhibited a superior antiproliferative activity against SW620 cells with a IC50 value of 0.86 μM. The above compound was thus chosen for further investigation on its anti-colorectal cancer (CRC) effect, and displayed inhibitory effects on the proliferation of HCT116 and CT26 cells with IC50 values of 0.96 μM and 1.71 μM, respectively. Furthermore, this compound could effectively suppress colony formation and induce cell cycle arrest and apoptosis in SW620 cells. Western blot analysis demonstrated that it exerted the anti-tumor activity through blocking the PI3K-AKT signaling pathway. Next, we examined its in vivo anti-tumor activity by establishing a subcutaneous CT26 xenograft model, and found that it significantly reduced the tumor sizes with limited toxicity. Collectively, these findings suggest that this compound could be utilized as a promising candidate against CRC.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.