利用先行指标增强分层预测进行库存管理

IF 6.7 2区 管理学 Q1 MANAGEMENT
Yves R. Sagaert , Nikolaos Kourentzes
{"title":"利用先行指标增强分层预测进行库存管理","authors":"Yves R. Sagaert ,&nbsp;Nikolaos Kourentzes","doi":"10.1016/j.omega.2025.103335","DOIUrl":null,"url":null,"abstract":"<div><div>Inventory management relies on accurate demand forecasts. Typically, these are univariate forecasts extrapolating patterns from past demand. The disaggregate nature of demand at the Stock Keeping Unit (SKU) level makes the incorporation of external information challenging. Nonetheless, such leading information can be critical to identifying disruptions and changes in the demand dynamics. To address the inventory planning needs of a global manufacturer we propose a methodology that identifies predictively useful leading indicators at an aggregate demand level, and translates that information to SKU-demand by leveraging on the hierarchical structure of the problem. Therefore, the proposed methodology provides probabilistic forecasts enriched by leading indicator information at SKU-level, as inputs for inventory management. The methodology automatically adjusts the choice of indicators for different required lead times, with some being more informative about the short-term demand dynamics and others for the long-term. We demonstrate the benefits both in the case of backorders and lost-sales, for a variety of lead times. We further benchmark the solution against solely using leading indicators or hierarchical forecasts, demonstrating that the benefits appear primarily by the proposed blending of the modelling approaches. The outcome is demonstratively better forecasts and inventory management for the case company. Additionally, management gains insights into the main drivers of their short and long-term demand, and the ability to adjust inventory replenishment accordingly. The ability to account for diverse macro and market information in operations is paramount for firms with a global reach that face different market conditions across countries. Additionally, the transparency of which leading indicators are influencing forecasts of different lead times is conducive to increased forecast trustworthiness.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"136 ","pages":"Article 103335"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inventory management with leading indicator augmented hierarchical forecasts\",\"authors\":\"Yves R. Sagaert ,&nbsp;Nikolaos Kourentzes\",\"doi\":\"10.1016/j.omega.2025.103335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inventory management relies on accurate demand forecasts. Typically, these are univariate forecasts extrapolating patterns from past demand. The disaggregate nature of demand at the Stock Keeping Unit (SKU) level makes the incorporation of external information challenging. Nonetheless, such leading information can be critical to identifying disruptions and changes in the demand dynamics. To address the inventory planning needs of a global manufacturer we propose a methodology that identifies predictively useful leading indicators at an aggregate demand level, and translates that information to SKU-demand by leveraging on the hierarchical structure of the problem. Therefore, the proposed methodology provides probabilistic forecasts enriched by leading indicator information at SKU-level, as inputs for inventory management. The methodology automatically adjusts the choice of indicators for different required lead times, with some being more informative about the short-term demand dynamics and others for the long-term. We demonstrate the benefits both in the case of backorders and lost-sales, for a variety of lead times. We further benchmark the solution against solely using leading indicators or hierarchical forecasts, demonstrating that the benefits appear primarily by the proposed blending of the modelling approaches. The outcome is demonstratively better forecasts and inventory management for the case company. Additionally, management gains insights into the main drivers of their short and long-term demand, and the ability to adjust inventory replenishment accordingly. The ability to account for diverse macro and market information in operations is paramount for firms with a global reach that face different market conditions across countries. Additionally, the transparency of which leading indicators are influencing forecasts of different lead times is conducive to increased forecast trustworthiness.</div></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":\"136 \",\"pages\":\"Article 103335\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305048325000611\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048325000611","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

库存管理依赖于准确的需求预测。通常,这些是单变量预测,从过去的需求推断模式。库存单位(SKU)层次上需求的分解性质使得外部信息的整合具有挑战性。尽管如此,这些领先信息对于识别需求动态中的中断和变化至关重要。为了解决全球制造商的库存计划需求,我们提出了一种方法,该方法在总需求水平上识别预测性有用的领先指标,并通过利用问题的层次结构将该信息转换为sku需求。因此,所提出的方法提供了由sku级领先指标信息丰富的概率预测,作为库存管理的输入。该方法自动调整不同所需交货期指标的选择,其中一些对短期需求动态更有帮助,而另一些则对长期需求更有帮助。我们展示了在延期订单和销售损失的情况下,各种交货时间的好处。我们进一步对单独使用领先指标或分层预测的解决方案进行基准测试,证明主要通过提出的建模方法的混合来显示益处。结果表明,案例公司的预测和库存管理都得到了改善。此外,管理层还可以深入了解其短期和长期需求的主要驱动因素,并相应地调整库存补充。对于具有全球影响力的公司来说,在运营中考虑各种宏观和市场信息的能力至关重要,因为这些公司在不同国家面临不同的市场条件。此外,对影响不同交货期预测的领先指标的透明度有助于提高预测的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inventory management with leading indicator augmented hierarchical forecasts
Inventory management relies on accurate demand forecasts. Typically, these are univariate forecasts extrapolating patterns from past demand. The disaggregate nature of demand at the Stock Keeping Unit (SKU) level makes the incorporation of external information challenging. Nonetheless, such leading information can be critical to identifying disruptions and changes in the demand dynamics. To address the inventory planning needs of a global manufacturer we propose a methodology that identifies predictively useful leading indicators at an aggregate demand level, and translates that information to SKU-demand by leveraging on the hierarchical structure of the problem. Therefore, the proposed methodology provides probabilistic forecasts enriched by leading indicator information at SKU-level, as inputs for inventory management. The methodology automatically adjusts the choice of indicators for different required lead times, with some being more informative about the short-term demand dynamics and others for the long-term. We demonstrate the benefits both in the case of backorders and lost-sales, for a variety of lead times. We further benchmark the solution against solely using leading indicators or hierarchical forecasts, demonstrating that the benefits appear primarily by the proposed blending of the modelling approaches. The outcome is demonstratively better forecasts and inventory management for the case company. Additionally, management gains insights into the main drivers of their short and long-term demand, and the ability to adjust inventory replenishment accordingly. The ability to account for diverse macro and market information in operations is paramount for firms with a global reach that face different market conditions across countries. Additionally, the transparency of which leading indicators are influencing forecasts of different lead times is conducive to increased forecast trustworthiness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Omega-international Journal of Management Science
Omega-international Journal of Management Science 管理科学-运筹学与管理科学
CiteScore
13.80
自引率
11.60%
发文量
130
审稿时长
56 days
期刊介绍: Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信