Erik Zschaubitz , Henning Schröder , Conor Christopher Glackin , Lukas Vogel , Matthias Labrenz , Theodor Sperlea
{"title":"环境元条形码数据集特征选择和机器学习方法的基准分析","authors":"Erik Zschaubitz , Henning Schröder , Conor Christopher Glackin , Lukas Vogel , Matthias Labrenz , Theodor Sperlea","doi":"10.1016/j.csbj.2025.04.017","DOIUrl":null,"url":null,"abstract":"<div><div>Next-Generation Sequencing methods like DNA metabarcoding enable the generation of large community composition datasets and have grown instrumental in many branches of ecology in recent years. However, the sparsity, compositionality, and high dimensionality of metabarcoding datasets pose challenges in data analysis. In theory, feature selection methods improve the analyzability of eDNA metabarcoding datasets by identifying a subset of informative taxa that are relevant for a certain task and discarding those that are redundant or irrelevant. However, general guidelines on selecting a feature selection method for application to a given setting are lacking. Here, we report a comparison of feature selection methods in a supervised machine learning setup across 13 environmental metabarcoding datasets with differing characteristics. We evaluate workflows that consist of data preprocessing, feature selection and a machine learning model by their ability to capture the ecological relationship between the microbial community composition and environmental parameters. Our results demonstrate that, while the optimal feature selection approach depends on dataset characteristics, feature selection is more likely to impair model performance than to improve it for tree ensemble models like Random Forests. Furthermore, our results show that calculating relative counts impairs model performance, which suggests that novel methods to combat the compositionality of metabarcoding data are required.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 1636-1647"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A benchmark analysis of feature selection and machine learning methods for environmental metabarcoding datasets\",\"authors\":\"Erik Zschaubitz , Henning Schröder , Conor Christopher Glackin , Lukas Vogel , Matthias Labrenz , Theodor Sperlea\",\"doi\":\"10.1016/j.csbj.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Next-Generation Sequencing methods like DNA metabarcoding enable the generation of large community composition datasets and have grown instrumental in many branches of ecology in recent years. However, the sparsity, compositionality, and high dimensionality of metabarcoding datasets pose challenges in data analysis. In theory, feature selection methods improve the analyzability of eDNA metabarcoding datasets by identifying a subset of informative taxa that are relevant for a certain task and discarding those that are redundant or irrelevant. However, general guidelines on selecting a feature selection method for application to a given setting are lacking. Here, we report a comparison of feature selection methods in a supervised machine learning setup across 13 environmental metabarcoding datasets with differing characteristics. We evaluate workflows that consist of data preprocessing, feature selection and a machine learning model by their ability to capture the ecological relationship between the microbial community composition and environmental parameters. Our results demonstrate that, while the optimal feature selection approach depends on dataset characteristics, feature selection is more likely to impair model performance than to improve it for tree ensemble models like Random Forests. Furthermore, our results show that calculating relative counts impairs model performance, which suggests that novel methods to combat the compositionality of metabarcoding data are required.</div></div>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"Pages 1636-1647\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2001037025001382\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025001382","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A benchmark analysis of feature selection and machine learning methods for environmental metabarcoding datasets
Next-Generation Sequencing methods like DNA metabarcoding enable the generation of large community composition datasets and have grown instrumental in many branches of ecology in recent years. However, the sparsity, compositionality, and high dimensionality of metabarcoding datasets pose challenges in data analysis. In theory, feature selection methods improve the analyzability of eDNA metabarcoding datasets by identifying a subset of informative taxa that are relevant for a certain task and discarding those that are redundant or irrelevant. However, general guidelines on selecting a feature selection method for application to a given setting are lacking. Here, we report a comparison of feature selection methods in a supervised machine learning setup across 13 environmental metabarcoding datasets with differing characteristics. We evaluate workflows that consist of data preprocessing, feature selection and a machine learning model by their ability to capture the ecological relationship between the microbial community composition and environmental parameters. Our results demonstrate that, while the optimal feature selection approach depends on dataset characteristics, feature selection is more likely to impair model performance than to improve it for tree ensemble models like Random Forests. Furthermore, our results show that calculating relative counts impairs model performance, which suggests that novel methods to combat the compositionality of metabarcoding data are required.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology