浮游动物驱动的霍乱病理流行病学动态预测:新的贝叶斯正则化深度NARX神经结构

IF 7 2区 医学 Q1 BIOLOGY
Muhammad Junaid Ali Asif Raja , Adil Sultan , Chuan-Yu Chang , Chi-Min Shu , Adiqa Kausar Kiani , Muhammad Shoaib , Muhammad Asif Zahoor Raja
{"title":"浮游动物驱动的霍乱病理流行病学动态预测:新的贝叶斯正则化深度NARX神经结构","authors":"Muhammad Junaid Ali Asif Raja ,&nbsp;Adil Sultan ,&nbsp;Chuan-Yu Chang ,&nbsp;Chi-Min Shu ,&nbsp;Adiqa Kausar Kiani ,&nbsp;Muhammad Shoaib ,&nbsp;Muhammad Asif Zahoor Raja","doi":"10.1016/j.compbiomed.2025.110197","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cholera outbreaks pose significant health concerns, particularly through freshwater contamination through zooplankton serving as reservoirs for <em>Vibrio Cholerae</em>. Understanding these complex interactions within the aquatic ecosystem through mathematical modeling regimes may help us predict and prevent the spread of Cholera disease spread in affected regions.</div></div><div><h3>Method</h3><div>In this study, an innovative <u>B</u>ayesian <u>r</u>egularized <u>d</u>eep <u>n</u>onlinear <u>a</u>utoregressive e<u>x</u>ogenous (BRDNARX) neural networks are employed to model the intricate dynamics of <u>Z</u>ooplankton-<u>D</u>riven <u>C</u>holera <u>D</u>isease <u>T</u>ransmission (ZDCDT) system. The cholera epidemic propagation through freshwater contamination is uncovered with analysis on densities of phytoplankton, vibrio cholerae carrying zooplankton, human population vector and microbial pathogen vector populous in the marine biosphere. Synthetic data for the ZDCDT is presented for diverse simulations using a modified Adams-Bashforth-Moulton predictor corrector numerical scheme. Subsequently, these temporal data sequences are preprocessed for the novel BRDNARX computing paradigm with an exhaustive assessment on mean square error iterative convergence plots, error histogram charts, regression index reports, input-error crosscorrelation charts, error autocorrelation charts, and time-series response dynamics.</div></div><div><h3>Results and conclusions</h3><div>Comparative absolute error analysis with reference numerical solution adheres to diminutive disparities of range 10<sup>−3</sup> to 10<sup>−9</sup>. Finally, BRDNARX neurostructures are reconfigured for predictive analysis of ZDCDT system in terms of single and multi-step ahead predictors with mean square error outcomes that range from 10<sup>−9</sup> to 10<sup>−11</sup>. This establishes the efficacy of BRDNARX in correctly adhering to the intricacies of the zooplankton-driven cholera pathoepidemiological dynamics with precise forward prognostication.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110197"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognostication of zooplankton-driven cholera pathoepidemiological Dynamics: Novel Bayesian-regularized deep NARX neuroarchitecture\",\"authors\":\"Muhammad Junaid Ali Asif Raja ,&nbsp;Adil Sultan ,&nbsp;Chuan-Yu Chang ,&nbsp;Chi-Min Shu ,&nbsp;Adiqa Kausar Kiani ,&nbsp;Muhammad Shoaib ,&nbsp;Muhammad Asif Zahoor Raja\",\"doi\":\"10.1016/j.compbiomed.2025.110197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Cholera outbreaks pose significant health concerns, particularly through freshwater contamination through zooplankton serving as reservoirs for <em>Vibrio Cholerae</em>. Understanding these complex interactions within the aquatic ecosystem through mathematical modeling regimes may help us predict and prevent the spread of Cholera disease spread in affected regions.</div></div><div><h3>Method</h3><div>In this study, an innovative <u>B</u>ayesian <u>r</u>egularized <u>d</u>eep <u>n</u>onlinear <u>a</u>utoregressive e<u>x</u>ogenous (BRDNARX) neural networks are employed to model the intricate dynamics of <u>Z</u>ooplankton-<u>D</u>riven <u>C</u>holera <u>D</u>isease <u>T</u>ransmission (ZDCDT) system. The cholera epidemic propagation through freshwater contamination is uncovered with analysis on densities of phytoplankton, vibrio cholerae carrying zooplankton, human population vector and microbial pathogen vector populous in the marine biosphere. Synthetic data for the ZDCDT is presented for diverse simulations using a modified Adams-Bashforth-Moulton predictor corrector numerical scheme. Subsequently, these temporal data sequences are preprocessed for the novel BRDNARX computing paradigm with an exhaustive assessment on mean square error iterative convergence plots, error histogram charts, regression index reports, input-error crosscorrelation charts, error autocorrelation charts, and time-series response dynamics.</div></div><div><h3>Results and conclusions</h3><div>Comparative absolute error analysis with reference numerical solution adheres to diminutive disparities of range 10<sup>−3</sup> to 10<sup>−9</sup>. Finally, BRDNARX neurostructures are reconfigured for predictive analysis of ZDCDT system in terms of single and multi-step ahead predictors with mean square error outcomes that range from 10<sup>−9</sup> to 10<sup>−11</sup>. This establishes the efficacy of BRDNARX in correctly adhering to the intricacies of the zooplankton-driven cholera pathoepidemiological dynamics with precise forward prognostication.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110197\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525005487\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005487","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

霍乱暴发造成严重的健康问题,特别是通过作为霍乱弧菌储存库的浮游动物造成淡水污染。通过数学建模机制了解水生生态系统内这些复杂的相互作用可能有助于我们预测和预防霍乱在受影响地区的传播。方法采用一种新颖的贝叶斯正则化深度非线性自回归外源性神经网络(BRDNARX)对浮游动物驱动的霍乱疾病传播(ZDCDT)系统的复杂动力学进行建模。通过对海洋生物圈中浮游植物、携带浮游动物的霍乱弧菌、人群媒介和微生物病原体媒介的密度分析,揭示了霍乱通过淡水污染传播的情况。采用改进的Adams-Bashforth-Moulton预测校正数值方案,给出了ZDCDT的综合数据。随后,对这些时间数据序列进行预处理,以适应新的BRDNARX计算范式,并对均方误差迭代收敛图、误差直方图、回归指数报告、输入误差相互关系图、误差自相关图和时间序列响应动力学进行详尽评估。结果和结论与参考数值解的比较绝对误差分析符合10−3至10−9范围内的微小差异。最后,BRDNARX神经结构被重新配置,用于ZDCDT系统的单步和多步预测分析,均方误差结果范围为10−9到10−11。这证实了BRDNARX在准确预测浮游动物驱动的霍乱病理流行病学动态的复杂性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prognostication of zooplankton-driven cholera pathoepidemiological Dynamics: Novel Bayesian-regularized deep NARX neuroarchitecture

Background

Cholera outbreaks pose significant health concerns, particularly through freshwater contamination through zooplankton serving as reservoirs for Vibrio Cholerae. Understanding these complex interactions within the aquatic ecosystem through mathematical modeling regimes may help us predict and prevent the spread of Cholera disease spread in affected regions.

Method

In this study, an innovative Bayesian regularized deep nonlinear autoregressive exogenous (BRDNARX) neural networks are employed to model the intricate dynamics of Zooplankton-Driven Cholera Disease Transmission (ZDCDT) system. The cholera epidemic propagation through freshwater contamination is uncovered with analysis on densities of phytoplankton, vibrio cholerae carrying zooplankton, human population vector and microbial pathogen vector populous in the marine biosphere. Synthetic data for the ZDCDT is presented for diverse simulations using a modified Adams-Bashforth-Moulton predictor corrector numerical scheme. Subsequently, these temporal data sequences are preprocessed for the novel BRDNARX computing paradigm with an exhaustive assessment on mean square error iterative convergence plots, error histogram charts, regression index reports, input-error crosscorrelation charts, error autocorrelation charts, and time-series response dynamics.

Results and conclusions

Comparative absolute error analysis with reference numerical solution adheres to diminutive disparities of range 10−3 to 10−9. Finally, BRDNARX neurostructures are reconfigured for predictive analysis of ZDCDT system in terms of single and multi-step ahead predictors with mean square error outcomes that range from 10−9 to 10−11. This establishes the efficacy of BRDNARX in correctly adhering to the intricacies of the zooplankton-driven cholera pathoepidemiological dynamics with precise forward prognostication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信