基于随机绑定的生物哈希模板保护方法在手掌静脉识别中的应用

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Tianming Xie;Wenxiong Kang
{"title":"基于随机绑定的生物哈希模板保护方法在手掌静脉识别中的应用","authors":"Tianming Xie;Wenxiong Kang","doi":"10.1109/TIFS.2025.3559791","DOIUrl":null,"url":null,"abstract":"To mitigate the risk of data breaches, an increasing number of biometric recognition systems are introducing encryption biometric template protection methods and directly matching in the encrypted domain. Depending on the approach to key management, prevailing biometric template protection strategies can be categorized into declarative and distributive methods. The former are challenged by complexities and vulnerabilities linked to key loss, while the latter are compromised by fixed mapping rules that may expose personal information. We present a biometric template protection method that combines random-fixed factors to handle these challenges, thereby protecting the user’s biometric privacy. Firstly, we introduce a random activation factor generation module that extracts scaling and offset factors from the user’s biometric data. This module randomly binds factors to different positions in each authentication process, rendering distance-dependent bitwise cracking algorithms ineffective. Secondly, we propose a fixed multi-branch mapping module that enhances feature expression and minimizes information loss post-encryption. We also develop a trainable min-max hash method, optimized using an improved approximate contrastive loss. Employing palm veins as a case study, we conducted experiments across five datasets, where our method outperformed other encrypted domain methods and showed competitive advantages over mainstream non-encrypted methods. Moreover, we have demonstrated that our method ensures robust performance while meeting essential security requirements of irreversibility, unlinkability, and revocability.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"4243-4255"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Random-Binding-Based Bio-Hashing Template Protection Method for Palm Vein Recognition\",\"authors\":\"Tianming Xie;Wenxiong Kang\",\"doi\":\"10.1109/TIFS.2025.3559791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To mitigate the risk of data breaches, an increasing number of biometric recognition systems are introducing encryption biometric template protection methods and directly matching in the encrypted domain. Depending on the approach to key management, prevailing biometric template protection strategies can be categorized into declarative and distributive methods. The former are challenged by complexities and vulnerabilities linked to key loss, while the latter are compromised by fixed mapping rules that may expose personal information. We present a biometric template protection method that combines random-fixed factors to handle these challenges, thereby protecting the user’s biometric privacy. Firstly, we introduce a random activation factor generation module that extracts scaling and offset factors from the user’s biometric data. This module randomly binds factors to different positions in each authentication process, rendering distance-dependent bitwise cracking algorithms ineffective. Secondly, we propose a fixed multi-branch mapping module that enhances feature expression and minimizes information loss post-encryption. We also develop a trainable min-max hash method, optimized using an improved approximate contrastive loss. Employing palm veins as a case study, we conducted experiments across five datasets, where our method outperformed other encrypted domain methods and showed competitive advantages over mainstream non-encrypted methods. Moreover, we have demonstrated that our method ensures robust performance while meeting essential security requirements of irreversibility, unlinkability, and revocability.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"4243-4255\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10972230/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10972230/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

为了降低数据泄露的风险,越来越多的生物特征识别系统引入了加密生物特征模板保护方法和加密域的直接匹配。根据密钥管理方法的不同,流行的生物识别模板保护策略可以分为声明式和分布式两种方法。前者受到与密钥丢失相关的复杂性和漏洞的挑战,而后者则受到可能暴露个人信息的固定映射规则的损害。我们提出了一种结合随机固定因素的生物特征模板保护方法来处理这些挑战,从而保护用户的生物特征隐私。首先,我们引入了一个随机激活因子生成模块,从用户的生物特征数据中提取缩放因子和偏移因子。该模块在每个认证过程中随机将因子绑定到不同的位置,使得依赖距离的位破解算法无效。其次,我们提出了一个固定的多分支映射模块,增强了特征表达,减少了加密后的信息丢失。我们还开发了一种可训练的最小-最大哈希方法,使用改进的近似对比损失进行优化。以手掌静脉为例,我们在五个数据集上进行了实验,在实验中,我们的方法优于其他加密域方法,并且比主流非加密方法显示出竞争优势。此外,我们已经证明了我们的方法在满足不可逆性、不可链接性和可撤销性的基本安全要求的同时确保了健壮的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Random-Binding-Based Bio-Hashing Template Protection Method for Palm Vein Recognition
To mitigate the risk of data breaches, an increasing number of biometric recognition systems are introducing encryption biometric template protection methods and directly matching in the encrypted domain. Depending on the approach to key management, prevailing biometric template protection strategies can be categorized into declarative and distributive methods. The former are challenged by complexities and vulnerabilities linked to key loss, while the latter are compromised by fixed mapping rules that may expose personal information. We present a biometric template protection method that combines random-fixed factors to handle these challenges, thereby protecting the user’s biometric privacy. Firstly, we introduce a random activation factor generation module that extracts scaling and offset factors from the user’s biometric data. This module randomly binds factors to different positions in each authentication process, rendering distance-dependent bitwise cracking algorithms ineffective. Secondly, we propose a fixed multi-branch mapping module that enhances feature expression and minimizes information loss post-encryption. We also develop a trainable min-max hash method, optimized using an improved approximate contrastive loss. Employing palm veins as a case study, we conducted experiments across five datasets, where our method outperformed other encrypted domain methods and showed competitive advantages over mainstream non-encrypted methods. Moreover, we have demonstrated that our method ensures robust performance while meeting essential security requirements of irreversibility, unlinkability, and revocability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信