{"title":"基于时态上下文和特征融合的端到端深度学习 QoS 预测模型","authors":"Peiyun Zhang;Jiajun Fan;Yutong Chen;Wenjun Huang;Haibin Zhu;Qinglin Zhao","doi":"10.1109/TSC.2025.3562324","DOIUrl":null,"url":null,"abstract":"Existing end-to-end quality of service (QoS) prediction methods based on deep learning often use one-hot encodings as features, which are input into neural networks. It is difficult for the networks to learn the information that is conducive to prediction. Aiming at the above problem, an end-to-end deep learning QoS prediction model based on a temporal context and feature fusion is proposed. In the proposed model, three blocks are designed for QoS prediction. Firstly, a user-service encoding conversion block is designed to convert the one-hot encodings of users and services into the latent features of users and services, which can make full use of the data in sparse matrices. Then a time feature extraction block is designed to extract time features based on the time-varying characteristics of QoS values. Finally, the time features are fused with the latent features of users and services to predict QoS values. The experimental results show that on existing datasets, the proposed model has better prediction accuracy than other advanced methods in response time and throughput.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 3","pages":"1232-1244"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An End-to-End Deep Learning QoS Prediction Model Based on Temporal Context and Feature Fusion\",\"authors\":\"Peiyun Zhang;Jiajun Fan;Yutong Chen;Wenjun Huang;Haibin Zhu;Qinglin Zhao\",\"doi\":\"10.1109/TSC.2025.3562324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing end-to-end quality of service (QoS) prediction methods based on deep learning often use one-hot encodings as features, which are input into neural networks. It is difficult for the networks to learn the information that is conducive to prediction. Aiming at the above problem, an end-to-end deep learning QoS prediction model based on a temporal context and feature fusion is proposed. In the proposed model, three blocks are designed for QoS prediction. Firstly, a user-service encoding conversion block is designed to convert the one-hot encodings of users and services into the latent features of users and services, which can make full use of the data in sparse matrices. Then a time feature extraction block is designed to extract time features based on the time-varying characteristics of QoS values. Finally, the time features are fused with the latent features of users and services to predict QoS values. The experimental results show that on existing datasets, the proposed model has better prediction accuracy than other advanced methods in response time and throughput.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 3\",\"pages\":\"1232-1244\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971899/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10971899/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An End-to-End Deep Learning QoS Prediction Model Based on Temporal Context and Feature Fusion
Existing end-to-end quality of service (QoS) prediction methods based on deep learning often use one-hot encodings as features, which are input into neural networks. It is difficult for the networks to learn the information that is conducive to prediction. Aiming at the above problem, an end-to-end deep learning QoS prediction model based on a temporal context and feature fusion is proposed. In the proposed model, three blocks are designed for QoS prediction. Firstly, a user-service encoding conversion block is designed to convert the one-hot encodings of users and services into the latent features of users and services, which can make full use of the data in sparse matrices. Then a time feature extraction block is designed to extract time features based on the time-varying characteristics of QoS values. Finally, the time features are fused with the latent features of users and services to predict QoS values. The experimental results show that on existing datasets, the proposed model has better prediction accuracy than other advanced methods in response time and throughput.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.