Sumner N. Hearth, Michael O. Flynn, Anushya Chandran, Chris R. Laumann
{"title":"守恒随机数量子电路的酉k -设计","authors":"Sumner N. Hearth, Michael O. Flynn, Anushya Chandran, Chris R. Laumann","doi":"10.1103/physrevx.15.021022","DOIUrl":null,"url":null,"abstract":"Local random circuits scramble efficiently and, accordingly, have a range of applications in quantum information and quantum dynamics. With a global U(1) charge, however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of k</a:mi></a:math>-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries. Specifically, the circuits form a <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>k</c:mi><c:mi>c</c:mi></c:msub></c:math>-design with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>k</e:mi><e:mi>c</e:mi></e:msub><e:mo>=</e:mo><e:mi>O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:msup><e:mi>L</e:mi><e:mi>d</e:mi></e:msup><e:mo stretchy=\"false\">)</e:mo></e:math> for a system in <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>d</i:mi></i:math> spatial dimensions with linear dimension <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>L</k:mi></k:math>. Second, for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>k</m:mi><m:mo><</m:mo><m:msub><m:mi>k</m:mi><m:mi>c</m:mi></m:msub></m:math>, we derive bounds on the depth <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>τ</o:mi></o:math> required for the circuit to converge to an approximate <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>k</q:mi></q:math>-design. The depth is lower bounded by diffusion <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>k</s:mi><s:msup><s:mi>L</s:mi><s:mn>2</s:mn></s:msup><s:mi>ln</s:mi><s:mo stretchy=\"false\">(</s:mo><s:mi>L</s:mi><s:mo stretchy=\"false\">)</s:mo><s:mo>≲</s:mo><s:mi>τ</s:mi></s:math>. In contrast, without number conservation <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>τ</w:mi><w:mo>∼</w:mo><w:mrow><w:mi>poly</w:mi></w:mrow><w:mo stretchy=\"false\">(</w:mo><w:mi>k</w:mi><w:mo stretchy=\"false\">)</w:mo><w:mi>L</w:mi></w:math>. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks k</ab:mi></ab:math> U(1) symmetries. We conjecture that the associated Goldstone modes set the spectral gap for arbitrary spatial and qudit dimensions, leading to an upper bound <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>τ</cb:mi><cb:mo>≲</cb:mo><cb:mi>k</cb:mi><cb:msup><cb:mi>L</cb:mi><cb:mrow><cb:mi>d</cb:mi><cb:mo>+</cb:mo><cb:mn>2</cb:mn></cb:mrow></cb:msup></cb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unitary k -Designs from Random Number-Conserving Quantum Circuits\",\"authors\":\"Sumner N. Hearth, Michael O. Flynn, Anushya Chandran, Chris R. Laumann\",\"doi\":\"10.1103/physrevx.15.021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local random circuits scramble efficiently and, accordingly, have a range of applications in quantum information and quantum dynamics. With a global U(1) charge, however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of k</a:mi></a:math>-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries. Specifically, the circuits form a <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>k</c:mi><c:mi>c</c:mi></c:msub></c:math>-design with <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>k</e:mi><e:mi>c</e:mi></e:msub><e:mo>=</e:mo><e:mi>O</e:mi><e:mo stretchy=\\\"false\\\">(</e:mo><e:msup><e:mi>L</e:mi><e:mi>d</e:mi></e:msup><e:mo stretchy=\\\"false\\\">)</e:mo></e:math> for a system in <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>d</i:mi></i:math> spatial dimensions with linear dimension <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>L</k:mi></k:math>. Second, for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>k</m:mi><m:mo><</m:mo><m:msub><m:mi>k</m:mi><m:mi>c</m:mi></m:msub></m:math>, we derive bounds on the depth <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>τ</o:mi></o:math> required for the circuit to converge to an approximate <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>k</q:mi></q:math>-design. The depth is lower bounded by diffusion <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>k</s:mi><s:msup><s:mi>L</s:mi><s:mn>2</s:mn></s:msup><s:mi>ln</s:mi><s:mo stretchy=\\\"false\\\">(</s:mo><s:mi>L</s:mi><s:mo stretchy=\\\"false\\\">)</s:mo><s:mo>≲</s:mo><s:mi>τ</s:mi></s:math>. In contrast, without number conservation <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>τ</w:mi><w:mo>∼</w:mo><w:mrow><w:mi>poly</w:mi></w:mrow><w:mo stretchy=\\\"false\\\">(</w:mo><w:mi>k</w:mi><w:mo stretchy=\\\"false\\\">)</w:mo><w:mi>L</w:mi></w:math>. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks k</ab:mi></ab:math> U(1) symmetries. We conjecture that the associated Goldstone modes set the spectral gap for arbitrary spatial and qudit dimensions, leading to an upper bound <cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:mi>τ</cb:mi><cb:mo>≲</cb:mo><cb:mi>k</cb:mi><cb:msup><cb:mi>L</cb:mi><cb:mrow><cb:mi>d</cb:mi><cb:mo>+</cb:mo><cb:mn>2</cb:mn></cb:mrow></cb:msup></cb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021022\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021022","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Unitary k -Designs from Random Number-Conserving Quantum Circuits
Local random circuits scramble efficiently and, accordingly, have a range of applications in quantum information and quantum dynamics. With a global U(1) charge, however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of k-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries. Specifically, the circuits form a kc-design with kc=O(Ld) for a system in d spatial dimensions with linear dimension L. Second, for k<kc, we derive bounds on the depth τ required for the circuit to converge to an approximate k-design. The depth is lower bounded by diffusion kL2ln(L)≲τ. In contrast, without number conservation τ∼poly(k)L. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks k U(1) symmetries. We conjecture that the associated Goldstone modes set the spectral gap for arbitrary spatial and qudit dimensions, leading to an upper bound τ≲kLd+2. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.