守恒随机数量子电路的酉k -设计

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Sumner N. Hearth, Michael O. Flynn, Anushya Chandran, Chris R. Laumann
{"title":"守恒随机数量子电路的酉k -设计","authors":"Sumner N. Hearth, Michael O. Flynn, Anushya Chandran, Chris R. Laumann","doi":"10.1103/physrevx.15.021022","DOIUrl":null,"url":null,"abstract":"Local random circuits scramble efficiently and, accordingly, have a range of applications in quantum information and quantum dynamics. With a global U(1) charge, however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of k</a:mi></a:math>-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries. Specifically, the circuits form a <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>k</c:mi><c:mi>c</c:mi></c:msub></c:math>-design with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>k</e:mi><e:mi>c</e:mi></e:msub><e:mo>=</e:mo><e:mi>O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:msup><e:mi>L</e:mi><e:mi>d</e:mi></e:msup><e:mo stretchy=\"false\">)</e:mo></e:math> for a system in <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>d</i:mi></i:math> spatial dimensions with linear dimension <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>L</k:mi></k:math>. Second, for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>k</m:mi><m:mo>&lt;</m:mo><m:msub><m:mi>k</m:mi><m:mi>c</m:mi></m:msub></m:math>, we derive bounds on the depth <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>τ</o:mi></o:math> required for the circuit to converge to an approximate <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>k</q:mi></q:math>-design. The depth is lower bounded by diffusion <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>k</s:mi><s:msup><s:mi>L</s:mi><s:mn>2</s:mn></s:msup><s:mi>ln</s:mi><s:mo stretchy=\"false\">(</s:mo><s:mi>L</s:mi><s:mo stretchy=\"false\">)</s:mo><s:mo>≲</s:mo><s:mi>τ</s:mi></s:math>. In contrast, without number conservation <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>τ</w:mi><w:mo>∼</w:mo><w:mrow><w:mi>poly</w:mi></w:mrow><w:mo stretchy=\"false\">(</w:mo><w:mi>k</w:mi><w:mo stretchy=\"false\">)</w:mo><w:mi>L</w:mi></w:math>. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks k</ab:mi></ab:math> U(1) symmetries. We conjecture that the associated Goldstone modes set the spectral gap for arbitrary spatial and qudit dimensions, leading to an upper bound <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>τ</cb:mi><cb:mo>≲</cb:mo><cb:mi>k</cb:mi><cb:msup><cb:mi>L</cb:mi><cb:mrow><cb:mi>d</cb:mi><cb:mo>+</cb:mo><cb:mn>2</cb:mn></cb:mrow></cb:msup></cb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unitary k -Designs from Random Number-Conserving Quantum Circuits\",\"authors\":\"Sumner N. Hearth, Michael O. Flynn, Anushya Chandran, Chris R. Laumann\",\"doi\":\"10.1103/physrevx.15.021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local random circuits scramble efficiently and, accordingly, have a range of applications in quantum information and quantum dynamics. With a global U(1) charge, however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of k</a:mi></a:math>-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries. Specifically, the circuits form a <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>k</c:mi><c:mi>c</c:mi></c:msub></c:math>-design with <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>k</e:mi><e:mi>c</e:mi></e:msub><e:mo>=</e:mo><e:mi>O</e:mi><e:mo stretchy=\\\"false\\\">(</e:mo><e:msup><e:mi>L</e:mi><e:mi>d</e:mi></e:msup><e:mo stretchy=\\\"false\\\">)</e:mo></e:math> for a system in <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>d</i:mi></i:math> spatial dimensions with linear dimension <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>L</k:mi></k:math>. Second, for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>k</m:mi><m:mo>&lt;</m:mo><m:msub><m:mi>k</m:mi><m:mi>c</m:mi></m:msub></m:math>, we derive bounds on the depth <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>τ</o:mi></o:math> required for the circuit to converge to an approximate <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>k</q:mi></q:math>-design. The depth is lower bounded by diffusion <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>k</s:mi><s:msup><s:mi>L</s:mi><s:mn>2</s:mn></s:msup><s:mi>ln</s:mi><s:mo stretchy=\\\"false\\\">(</s:mo><s:mi>L</s:mi><s:mo stretchy=\\\"false\\\">)</s:mo><s:mo>≲</s:mo><s:mi>τ</s:mi></s:math>. In contrast, without number conservation <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>τ</w:mi><w:mo>∼</w:mo><w:mrow><w:mi>poly</w:mi></w:mrow><w:mo stretchy=\\\"false\\\">(</w:mo><w:mi>k</w:mi><w:mo stretchy=\\\"false\\\">)</w:mo><w:mi>L</w:mi></w:math>. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks k</ab:mi></ab:math> U(1) symmetries. We conjecture that the associated Goldstone modes set the spectral gap for arbitrary spatial and qudit dimensions, leading to an upper bound <cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:mi>τ</cb:mi><cb:mo>≲</cb:mo><cb:mi>k</cb:mi><cb:msup><cb:mi>L</cb:mi><cb:mrow><cb:mi>d</cb:mi><cb:mo>+</cb:mo><cb:mn>2</cb:mn></cb:mrow></cb:msup></cb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021022\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021022","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

局部随机电路的乱序效率高,因此在量子信息和量子动力学中有着广泛的应用。全局U(1)电荷时,置乱能力降低;例如,这样的随机电路不会产生整个保数一元组。我们利用k-fold复制电路的统计力学建立了两个结果。首先,我们证明了有限矩不能区分局部随机电路产生的系综与整个守恒酉群上的Haar系综。具体来说,对于具有线性维数l的d空间维系统,电路形成kc=O(Ld)的kc-设计。其次,对于k<;kc,我们推导了电路收敛到近似k-设计所需的深度τ的界。深度的下界为扩散kL2ln(L) > τ。相比之下,没有数字守恒τ ~ poly(k)L。电路系综的收敛是由自发破缺k U(1)对称性的无挫折量子统计模型的低能特性控制的。我们推测,相关的Goldstone模式在任意空间和量子位维上设置了光谱间隙,从而导致上限τ > kLd+2。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unitary k -Designs from Random Number-Conserving Quantum Circuits
Local random circuits scramble efficiently and, accordingly, have a range of applications in quantum information and quantum dynamics. With a global U(1) charge, however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of k-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries. Specifically, the circuits form a kc-design with kc=O(Ld) for a system in d spatial dimensions with linear dimension L. Second, for k<kc, we derive bounds on the depth τ required for the circuit to converge to an approximate k-design. The depth is lower bounded by diffusion kL2ln(L)τ. In contrast, without number conservation τpoly(k)L. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks k U(1) symmetries. We conjecture that the associated Goldstone modes set the spectral gap for arbitrary spatial and qudit dimensions, leading to an upper bound τkLd+2. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信