Maryam Rahimi Chegeni, Wenhao Ma, Sascha Riegler, Amirhossein Ghavimi, Magnus Rohde, Fan Yang, Hans Jürgen Seifert, Isabella Gallino, Ralf Busch
{"title":"Pd-Ni-S大块金属玻璃成形系统的热力学分析与建模","authors":"Maryam Rahimi Chegeni, Wenhao Ma, Sascha Riegler, Amirhossein Ghavimi, Magnus Rohde, Fan Yang, Hans Jürgen Seifert, Isabella Gallino, Ralf Busch","doi":"10.1016/j.actamat.2025.121074","DOIUrl":null,"url":null,"abstract":"This study explores both experimental and computational aspects of the thermophysical properties of the novel ternary BMG-forming Pd-Ni-S system. Unlike more complex quinary BMG-formers, this ternary system's simplicity allows for applying the CALPHAD approach to model the underlying thermodynamics governing glass formation.Experimental investigations include quantifying specific heat capacity and studying crystallization across various compositions critical for generating essential input data. Using a two-state approach, initial modeling of the undercooled liquid and glass is conducted for individual elements and extended to the ternary system. Model predictions are validated against experimental findings and iteratively optimized. Using the parallel tangent method, the Gibbs free energy of crystalline and liquid phases at different compositions are calculated, providing a more accurate estimation of the nucleation driving force of the first forming phase compared to the conventional thermodynamic approach. These calculated driving forces are then used to model the isothermal Time-Temperature-Transformation (TTT) diagrams, and finally for the estimation of the interfacial energy between liquid and crystal during primary crystallization, which plays an important role in the glass-forming ability of this system. The experimental and calculated results are found to be compatible for near-eutectic compositions.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"15 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic analysis and modeling of Pd-Ni-S bulk metallic glass-forming system\",\"authors\":\"Maryam Rahimi Chegeni, Wenhao Ma, Sascha Riegler, Amirhossein Ghavimi, Magnus Rohde, Fan Yang, Hans Jürgen Seifert, Isabella Gallino, Ralf Busch\",\"doi\":\"10.1016/j.actamat.2025.121074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores both experimental and computational aspects of the thermophysical properties of the novel ternary BMG-forming Pd-Ni-S system. Unlike more complex quinary BMG-formers, this ternary system's simplicity allows for applying the CALPHAD approach to model the underlying thermodynamics governing glass formation.Experimental investigations include quantifying specific heat capacity and studying crystallization across various compositions critical for generating essential input data. Using a two-state approach, initial modeling of the undercooled liquid and glass is conducted for individual elements and extended to the ternary system. Model predictions are validated against experimental findings and iteratively optimized. Using the parallel tangent method, the Gibbs free energy of crystalline and liquid phases at different compositions are calculated, providing a more accurate estimation of the nucleation driving force of the first forming phase compared to the conventional thermodynamic approach. These calculated driving forces are then used to model the isothermal Time-Temperature-Transformation (TTT) diagrams, and finally for the estimation of the interfacial energy between liquid and crystal during primary crystallization, which plays an important role in the glass-forming ability of this system. The experimental and calculated results are found to be compatible for near-eutectic compositions.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121074\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermodynamic analysis and modeling of Pd-Ni-S bulk metallic glass-forming system
This study explores both experimental and computational aspects of the thermophysical properties of the novel ternary BMG-forming Pd-Ni-S system. Unlike more complex quinary BMG-formers, this ternary system's simplicity allows for applying the CALPHAD approach to model the underlying thermodynamics governing glass formation.Experimental investigations include quantifying specific heat capacity and studying crystallization across various compositions critical for generating essential input data. Using a two-state approach, initial modeling of the undercooled liquid and glass is conducted for individual elements and extended to the ternary system. Model predictions are validated against experimental findings and iteratively optimized. Using the parallel tangent method, the Gibbs free energy of crystalline and liquid phases at different compositions are calculated, providing a more accurate estimation of the nucleation driving force of the first forming phase compared to the conventional thermodynamic approach. These calculated driving forces are then used to model the isothermal Time-Temperature-Transformation (TTT) diagrams, and finally for the estimation of the interfacial energy between liquid and crystal during primary crystallization, which plays an important role in the glass-forming ability of this system. The experimental and calculated results are found to be compatible for near-eutectic compositions.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.