{"title":"含间隙流体的颗粒流动数值模型","authors":"Yadong Wang, Wei Wu","doi":"10.1002/nag.3990","DOIUrl":null,"url":null,"abstract":"We present a constitutive model for the mechanical behavior of granular flow for both solid‐like and fluid‐like regimes. The stress rate tensor is decomposed into rate‐independent and rate‐dependent parts. The hypoplastic model is used for the rate‐independent part, while the ‐type rheological model is employed for the rate‐dependent part. The Stokes number is introduced to capture the influence of interstitial fluid viscosity within the rate‐dependent part of the model. The model performance is demonstrated through numerical simulations of element tests, encompassing both granular materials and granular‐fluid mixtures.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"52 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Model for Granular Flow With Interstitial Fluid\",\"authors\":\"Yadong Wang, Wei Wu\",\"doi\":\"10.1002/nag.3990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a constitutive model for the mechanical behavior of granular flow for both solid‐like and fluid‐like regimes. The stress rate tensor is decomposed into rate‐independent and rate‐dependent parts. The hypoplastic model is used for the rate‐independent part, while the ‐type rheological model is employed for the rate‐dependent part. The Stokes number is introduced to capture the influence of interstitial fluid viscosity within the rate‐dependent part of the model. The model performance is demonstrated through numerical simulations of element tests, encompassing both granular materials and granular‐fluid mixtures.\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/nag.3990\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3990","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Numerical Model for Granular Flow With Interstitial Fluid
We present a constitutive model for the mechanical behavior of granular flow for both solid‐like and fluid‐like regimes. The stress rate tensor is decomposed into rate‐independent and rate‐dependent parts. The hypoplastic model is used for the rate‐independent part, while the ‐type rheological model is employed for the rate‐dependent part. The Stokes number is introduced to capture the influence of interstitial fluid viscosity within the rate‐dependent part of the model. The model performance is demonstrated through numerical simulations of element tests, encompassing both granular materials and granular‐fluid mixtures.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.