Juan-Felipe Perez-Correa, Thomas Stiehl, Riccardo E. Marioni, Janie Corley, Simon R. Cox, Ivan G. Costa, Wolfgang Wagner
{"title":"加权二维核密度估计为表观遗传年龄提供了一种新的概率测量方法","authors":"Juan-Felipe Perez-Correa, Thomas Stiehl, Riccardo E. Marioni, Janie Corley, Simon R. Cox, Ivan G. Costa, Wolfgang Wagner","doi":"10.1186/s13059-025-03562-1","DOIUrl":null,"url":null,"abstract":"Epigenetic aging signatures provide insights into human aging, but traditional clocks rely on linear regression of DNA methylation levels, assuming linear trajectories. This study explores a non-parametric approach using 2D-kernel density estimation to determine epigenetic age. Our weighted model achieves similar predictive accuracy as conventional clocks and provides a variation score reflecting the inherent variability of age-related epigenetic changes within samples. This score is significantly increased in various diseases and associated with mortality risk in the Lothian Birth Cohort 1921. Thus, weighted 2D-kernel density estimation facilitates accurate epigenetic age predictions and offers an additional variable for biological age estimation.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"5 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted 2D-kernel density estimations provide a new probabilistic measure for epigenetic age\",\"authors\":\"Juan-Felipe Perez-Correa, Thomas Stiehl, Riccardo E. Marioni, Janie Corley, Simon R. Cox, Ivan G. Costa, Wolfgang Wagner\",\"doi\":\"10.1186/s13059-025-03562-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epigenetic aging signatures provide insights into human aging, but traditional clocks rely on linear regression of DNA methylation levels, assuming linear trajectories. This study explores a non-parametric approach using 2D-kernel density estimation to determine epigenetic age. Our weighted model achieves similar predictive accuracy as conventional clocks and provides a variation score reflecting the inherent variability of age-related epigenetic changes within samples. This score is significantly increased in various diseases and associated with mortality risk in the Lothian Birth Cohort 1921. Thus, weighted 2D-kernel density estimation facilitates accurate epigenetic age predictions and offers an additional variable for biological age estimation.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03562-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03562-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Weighted 2D-kernel density estimations provide a new probabilistic measure for epigenetic age
Epigenetic aging signatures provide insights into human aging, but traditional clocks rely on linear regression of DNA methylation levels, assuming linear trajectories. This study explores a non-parametric approach using 2D-kernel density estimation to determine epigenetic age. Our weighted model achieves similar predictive accuracy as conventional clocks and provides a variation score reflecting the inherent variability of age-related epigenetic changes within samples. This score is significantly increased in various diseases and associated with mortality risk in the Lothian Birth Cohort 1921. Thus, weighted 2D-kernel density estimation facilitates accurate epigenetic age predictions and offers an additional variable for biological age estimation.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.