{"title":"GESim:通过冯-诺依曼图熵进行基于图的超快分子相似性计算","authors":"Hiroaki Shiokawa, Shoichi Ishida, Kei Terayama","doi":"10.1186/s13321-025-01003-6","DOIUrl":null,"url":null,"abstract":"<div><p>Representing molecules as graphs is a natural approach for capturing their structural information, with atoms depicted as nodes and bonds as edges. Although graph-based similarity calculation approaches, such as the graph edit distance, have been proposed for calculating molecular similarity, these approaches are nondeterministic polynomial (NP)-hard and thus computationally infeasible for routine use, unlike fingerprint-based methods. To address this limitation, we developed GESim, an ultrafast graph-based method for calculating molecular similarity on the basis of von Neumann graph entropy. GESim enables molecular similarity calculations by considering entire molecular graphs, and evaluations using two benchmarks for molecular similarity suggest that GESim has the ability to differentiate between highly similar molecules, even in cases where other methods fail to effectively distinguish their similarity. GESim is provided as an open-source package on GitHub at https://github.com/LazyShion/GESim.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01003-6","citationCount":"0","resultStr":"{\"title\":\"GESim: ultrafast graph-based molecular similarity calculation via von Neumann graph entropy\",\"authors\":\"Hiroaki Shiokawa, Shoichi Ishida, Kei Terayama\",\"doi\":\"10.1186/s13321-025-01003-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Representing molecules as graphs is a natural approach for capturing their structural information, with atoms depicted as nodes and bonds as edges. Although graph-based similarity calculation approaches, such as the graph edit distance, have been proposed for calculating molecular similarity, these approaches are nondeterministic polynomial (NP)-hard and thus computationally infeasible for routine use, unlike fingerprint-based methods. To address this limitation, we developed GESim, an ultrafast graph-based method for calculating molecular similarity on the basis of von Neumann graph entropy. GESim enables molecular similarity calculations by considering entire molecular graphs, and evaluations using two benchmarks for molecular similarity suggest that GESim has the ability to differentiate between highly similar molecules, even in cases where other methods fail to effectively distinguish their similarity. GESim is provided as an open-source package on GitHub at https://github.com/LazyShion/GESim.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01003-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01003-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01003-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
GESim: ultrafast graph-based molecular similarity calculation via von Neumann graph entropy
Representing molecules as graphs is a natural approach for capturing their structural information, with atoms depicted as nodes and bonds as edges. Although graph-based similarity calculation approaches, such as the graph edit distance, have been proposed for calculating molecular similarity, these approaches are nondeterministic polynomial (NP)-hard and thus computationally infeasible for routine use, unlike fingerprint-based methods. To address this limitation, we developed GESim, an ultrafast graph-based method for calculating molecular similarity on the basis of von Neumann graph entropy. GESim enables molecular similarity calculations by considering entire molecular graphs, and evaluations using two benchmarks for molecular similarity suggest that GESim has the ability to differentiate between highly similar molecules, even in cases where other methods fail to effectively distinguish their similarity. GESim is provided as an open-source package on GitHub at https://github.com/LazyShion/GESim.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.