Nan Li, DeYu Fang, Feng Ge, Lin Zhang, Ying Liu, Yan Gao, HongXu Jin
{"title":"褪黑素刺激的间充质干细胞衍生的携带LINC00052的外泌体通过促进miR-152-3p-KLF4-Nrf2通路减轻高氧肺损伤","authors":"Nan Li, DeYu Fang, Feng Ge, Lin Zhang, Ying Liu, Yan Gao, HongXu Jin","doi":"10.1002/jbt.70241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Exposure of the lungs to high O2 levels, can lead to a noninfectious lung damage known as hyperoxia-induced lung injury (HILI). Melatonin stimulation can enhance the efficacy of stem cells in some diseases. This study aims to investigate the mechanism of exosomes secreted by mesenchymal stem cells (MSCs) stimulated by melatonin in HILI. The MSCs-derived exosomes were isolated and identified after stimulation with melatonin, and the neonatal rat model of HILI was constructed. After injection of exosomes and related lentiviruses, the ratio of wet lung to dry lung was calculated to evaluate pulmonary edema. Inflammatory factors in medium or serum were measured by ELISA. HE staining was used to evaluate the pathological status of lung tissue. Masson staining was used to evaluate collagen deposition in lung tissue. Lung cell apoptosis was detected by Tunel staining. In vitro model of HILI was established, CCK-8 and EDU staining were used to detect cell viability and proliferation, and flow cytometry was used to detect cell apoptosis. The binding relationship between LINC00052, miR-152-3p, and KLF4 was verified through bioinformatics websites, dual luciferase reporter experiments, RIP experiments, and RNA pull down experiments. Melatonin-stimulated MSCs-derived exosomes could alleviate HILI. Exosomes had a therapeutic effect on HILI neonatal rats by carrying LINC00052. Inhibition of LINC00052 reversed the therapeutic effect of exosomes on HILI, while low expression of miR-152-3p or inducing KLF4 negated the effect of sh-LINC00052. LINC00052 bound to miR-152-3p. miR-152-3p targeted KLF4. In vitro, melatonin-stimulated MSC-derived exosomes alleviated the cytotoxicity and cell viability inhibition of AEC-II cells induced by hyperoxia. KLF4 overexpression activated NRF2 signaling in AEC-II cells. LINC00052 in MSCs-derived exosomes stimulated by melatonin activates the Nrf2 pathway through the miR-152-3p/KLF4 axis to alleviate HILI, which may be a potential therapeutic approach for HILI.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin-Stimulated Mesenchymal Stem Cells-Derived Exosomes Carrying LINC00052 Alleviate Hyperoxic Lung Injury by Promoting miR-152-3p-KLF4-Nrf2 Pathway\",\"authors\":\"Nan Li, DeYu Fang, Feng Ge, Lin Zhang, Ying Liu, Yan Gao, HongXu Jin\",\"doi\":\"10.1002/jbt.70241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Exposure of the lungs to high O2 levels, can lead to a noninfectious lung damage known as hyperoxia-induced lung injury (HILI). Melatonin stimulation can enhance the efficacy of stem cells in some diseases. This study aims to investigate the mechanism of exosomes secreted by mesenchymal stem cells (MSCs) stimulated by melatonin in HILI. The MSCs-derived exosomes were isolated and identified after stimulation with melatonin, and the neonatal rat model of HILI was constructed. After injection of exosomes and related lentiviruses, the ratio of wet lung to dry lung was calculated to evaluate pulmonary edema. Inflammatory factors in medium or serum were measured by ELISA. HE staining was used to evaluate the pathological status of lung tissue. Masson staining was used to evaluate collagen deposition in lung tissue. Lung cell apoptosis was detected by Tunel staining. In vitro model of HILI was established, CCK-8 and EDU staining were used to detect cell viability and proliferation, and flow cytometry was used to detect cell apoptosis. The binding relationship between LINC00052, miR-152-3p, and KLF4 was verified through bioinformatics websites, dual luciferase reporter experiments, RIP experiments, and RNA pull down experiments. Melatonin-stimulated MSCs-derived exosomes could alleviate HILI. Exosomes had a therapeutic effect on HILI neonatal rats by carrying LINC00052. Inhibition of LINC00052 reversed the therapeutic effect of exosomes on HILI, while low expression of miR-152-3p or inducing KLF4 negated the effect of sh-LINC00052. LINC00052 bound to miR-152-3p. miR-152-3p targeted KLF4. In vitro, melatonin-stimulated MSC-derived exosomes alleviated the cytotoxicity and cell viability inhibition of AEC-II cells induced by hyperoxia. KLF4 overexpression activated NRF2 signaling in AEC-II cells. LINC00052 in MSCs-derived exosomes stimulated by melatonin activates the Nrf2 pathway through the miR-152-3p/KLF4 axis to alleviate HILI, which may be a potential therapeutic approach for HILI.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70241\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70241","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exposure of the lungs to high O2 levels, can lead to a noninfectious lung damage known as hyperoxia-induced lung injury (HILI). Melatonin stimulation can enhance the efficacy of stem cells in some diseases. This study aims to investigate the mechanism of exosomes secreted by mesenchymal stem cells (MSCs) stimulated by melatonin in HILI. The MSCs-derived exosomes were isolated and identified after stimulation with melatonin, and the neonatal rat model of HILI was constructed. After injection of exosomes and related lentiviruses, the ratio of wet lung to dry lung was calculated to evaluate pulmonary edema. Inflammatory factors in medium or serum were measured by ELISA. HE staining was used to evaluate the pathological status of lung tissue. Masson staining was used to evaluate collagen deposition in lung tissue. Lung cell apoptosis was detected by Tunel staining. In vitro model of HILI was established, CCK-8 and EDU staining were used to detect cell viability and proliferation, and flow cytometry was used to detect cell apoptosis. The binding relationship between LINC00052, miR-152-3p, and KLF4 was verified through bioinformatics websites, dual luciferase reporter experiments, RIP experiments, and RNA pull down experiments. Melatonin-stimulated MSCs-derived exosomes could alleviate HILI. Exosomes had a therapeutic effect on HILI neonatal rats by carrying LINC00052. Inhibition of LINC00052 reversed the therapeutic effect of exosomes on HILI, while low expression of miR-152-3p or inducing KLF4 negated the effect of sh-LINC00052. LINC00052 bound to miR-152-3p. miR-152-3p targeted KLF4. In vitro, melatonin-stimulated MSC-derived exosomes alleviated the cytotoxicity and cell viability inhibition of AEC-II cells induced by hyperoxia. KLF4 overexpression activated NRF2 signaling in AEC-II cells. LINC00052 in MSCs-derived exosomes stimulated by melatonin activates the Nrf2 pathway through the miR-152-3p/KLF4 axis to alleviate HILI, which may be a potential therapeutic approach for HILI.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.