{"title":"西瓜皮中果胶和多酚的连续提取及其在草莓保鲜膜中的应用","authors":"Xiaolin Jin, Yue Han, Qingshen Sun","doi":"10.1111/1750-3841.70216","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of this study was to extract watermelon rind (WR) pectin (WRP) and watermelon rind polyphenols (WRE) and evaluate the effect of pectin/sodium alginate composite films (WRPSA) with or without WRE on strawberry preservation. WRP was extracted using citric acid, whereas WRE was obtained through ethyl acetate extraction. The extracted WRP was characterized for composition and structural properties, multi-angle laser light scattering (MALLS), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), ζ-potential analysis, and rheological measurements. The pectin/SA film (WRPSA) and pectin/SA composite film containing WRE (WRPESA) were prepared. Both films were analyzed for physical properties and structurally characterized. Strawberries were wrapped with either WRPSA, WRPESA, or no treatment (exposed) and stored under lightproof conditions at 4°C for 12 days. The results showed that WRP was a low-ester pectin (degree of methylation [DM] = 38.7%) with a molecular weight of 683 kDa. WRP had typical polysaccharide characteristic peaks and good thermal stability that could be used as a film-forming substrate. WRPESA showed better mechanical strength and antioxidant capacity than that of WRPSA, indicating that WRE showed synergistic effects on the improvement of composite films. Additionally, WRPESA effectively reduced strawberry softening, color deterioration, and weight loss, in addition to the delay in the dynamic changes in sugar content and pH and accumulation of malondialdehyde (MDA). WRPESA also helped maintain the total phenolic content of the strawberries. These findings suggest that watermelon byproducts could be valorized for sustainable food packaging, reducing both agricultural waste and reliance on synthetic materials.</p>\n <p><b>Practical Application</b>: This article confirmed the feasibility of a sequential extraction process for watermelon rind pectin and polyphenols, which can later be applied to industrial production lines to increase the utilization rate of watermelon rind. The practical application value of this research lies in the development of biodegradable packaging materials. By extracting pectin and polyphenols from watermelon rind, the resulting films can effectively extend the shelf life of strawberries and reduce food waste. Furthermore, this study promotes the utilization of agricultural waste, enhances the nutritional value of food, and provides new opportunities for local economic development. Additionally, it offers a scientific basis for advancing sustainable packaging technology and food preservation innovations, which is significant for environmental protection and healthy consumption.</p>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serial Extraction of Pectin and Polyphenols From Watermelon Rind for Use in Strawberry Preservation Film\",\"authors\":\"Xiaolin Jin, Yue Han, Qingshen Sun\",\"doi\":\"10.1111/1750-3841.70216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The aim of this study was to extract watermelon rind (WR) pectin (WRP) and watermelon rind polyphenols (WRE) and evaluate the effect of pectin/sodium alginate composite films (WRPSA) with or without WRE on strawberry preservation. WRP was extracted using citric acid, whereas WRE was obtained through ethyl acetate extraction. The extracted WRP was characterized for composition and structural properties, multi-angle laser light scattering (MALLS), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), ζ-potential analysis, and rheological measurements. The pectin/SA film (WRPSA) and pectin/SA composite film containing WRE (WRPESA) were prepared. Both films were analyzed for physical properties and structurally characterized. Strawberries were wrapped with either WRPSA, WRPESA, or no treatment (exposed) and stored under lightproof conditions at 4°C for 12 days. The results showed that WRP was a low-ester pectin (degree of methylation [DM] = 38.7%) with a molecular weight of 683 kDa. WRP had typical polysaccharide characteristic peaks and good thermal stability that could be used as a film-forming substrate. WRPESA showed better mechanical strength and antioxidant capacity than that of WRPSA, indicating that WRE showed synergistic effects on the improvement of composite films. Additionally, WRPESA effectively reduced strawberry softening, color deterioration, and weight loss, in addition to the delay in the dynamic changes in sugar content and pH and accumulation of malondialdehyde (MDA). WRPESA also helped maintain the total phenolic content of the strawberries. These findings suggest that watermelon byproducts could be valorized for sustainable food packaging, reducing both agricultural waste and reliance on synthetic materials.</p>\\n <p><b>Practical Application</b>: This article confirmed the feasibility of a sequential extraction process for watermelon rind pectin and polyphenols, which can later be applied to industrial production lines to increase the utilization rate of watermelon rind. The practical application value of this research lies in the development of biodegradable packaging materials. By extracting pectin and polyphenols from watermelon rind, the resulting films can effectively extend the shelf life of strawberries and reduce food waste. Furthermore, this study promotes the utilization of agricultural waste, enhances the nutritional value of food, and provides new opportunities for local economic development. Additionally, it offers a scientific basis for advancing sustainable packaging technology and food preservation innovations, which is significant for environmental protection and healthy consumption.</p>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70216\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70216","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Serial Extraction of Pectin and Polyphenols From Watermelon Rind for Use in Strawberry Preservation Film
The aim of this study was to extract watermelon rind (WR) pectin (WRP) and watermelon rind polyphenols (WRE) and evaluate the effect of pectin/sodium alginate composite films (WRPSA) with or without WRE on strawberry preservation. WRP was extracted using citric acid, whereas WRE was obtained through ethyl acetate extraction. The extracted WRP was characterized for composition and structural properties, multi-angle laser light scattering (MALLS), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), ζ-potential analysis, and rheological measurements. The pectin/SA film (WRPSA) and pectin/SA composite film containing WRE (WRPESA) were prepared. Both films were analyzed for physical properties and structurally characterized. Strawberries were wrapped with either WRPSA, WRPESA, or no treatment (exposed) and stored under lightproof conditions at 4°C for 12 days. The results showed that WRP was a low-ester pectin (degree of methylation [DM] = 38.7%) with a molecular weight of 683 kDa. WRP had typical polysaccharide characteristic peaks and good thermal stability that could be used as a film-forming substrate. WRPESA showed better mechanical strength and antioxidant capacity than that of WRPSA, indicating that WRE showed synergistic effects on the improvement of composite films. Additionally, WRPESA effectively reduced strawberry softening, color deterioration, and weight loss, in addition to the delay in the dynamic changes in sugar content and pH and accumulation of malondialdehyde (MDA). WRPESA also helped maintain the total phenolic content of the strawberries. These findings suggest that watermelon byproducts could be valorized for sustainable food packaging, reducing both agricultural waste and reliance on synthetic materials.
Practical Application: This article confirmed the feasibility of a sequential extraction process for watermelon rind pectin and polyphenols, which can later be applied to industrial production lines to increase the utilization rate of watermelon rind. The practical application value of this research lies in the development of biodegradable packaging materials. By extracting pectin and polyphenols from watermelon rind, the resulting films can effectively extend the shelf life of strawberries and reduce food waste. Furthermore, this study promotes the utilization of agricultural waste, enhances the nutritional value of food, and provides new opportunities for local economic development. Additionally, it offers a scientific basis for advancing sustainable packaging technology and food preservation innovations, which is significant for environmental protection and healthy consumption.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.