西瓜皮中果胶和多酚的连续提取及其在草莓保鲜膜中的应用

IF 3.4 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Xiaolin Jin, Yue Han, Qingshen Sun
{"title":"西瓜皮中果胶和多酚的连续提取及其在草莓保鲜膜中的应用","authors":"Xiaolin Jin,&nbsp;Yue Han,&nbsp;Qingshen Sun","doi":"10.1111/1750-3841.70216","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of this study was to extract watermelon rind (WR) pectin (WRP) and watermelon rind polyphenols (WRE) and evaluate the effect of pectin/sodium alginate composite films (WRPSA) with or without WRE on strawberry preservation. WRP was extracted using citric acid, whereas WRE was obtained through ethyl acetate extraction. The extracted WRP was characterized for composition and structural properties, multi-angle laser light scattering (MALLS), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), ζ-potential analysis, and rheological measurements. The pectin/SA film (WRPSA) and pectin/SA composite film containing WRE (WRPESA) were prepared. Both films were analyzed for physical properties and structurally characterized. Strawberries were wrapped with either WRPSA, WRPESA, or no treatment (exposed) and stored under lightproof conditions at 4°C for 12 days. The results showed that WRP was a low-ester pectin (degree of methylation [DM] = 38.7%) with a molecular weight of 683 kDa. WRP had typical polysaccharide characteristic peaks and good thermal stability that could be used as a film-forming substrate. WRPESA showed better mechanical strength and antioxidant capacity than that of WRPSA, indicating that WRE showed synergistic effects on the improvement of composite films. Additionally, WRPESA effectively reduced strawberry softening, color deterioration, and weight loss, in addition to the delay in the dynamic changes in sugar content and pH and accumulation of malondialdehyde (MDA). WRPESA also helped maintain the total phenolic content of the strawberries. These findings suggest that watermelon byproducts could be valorized for sustainable food packaging, reducing both agricultural waste and reliance on synthetic materials.</p>\n <p><b>Practical Application</b>: This article confirmed the feasibility of a sequential extraction process for watermelon rind pectin and polyphenols, which can later be applied to industrial production lines to increase the utilization rate of watermelon rind. The practical application value of this research lies in the development of biodegradable packaging materials. By extracting pectin and polyphenols from watermelon rind, the resulting films can effectively extend the shelf life of strawberries and reduce food waste. Furthermore, this study promotes the utilization of agricultural waste, enhances the nutritional value of food, and provides new opportunities for local economic development. Additionally, it offers a scientific basis for advancing sustainable packaging technology and food preservation innovations, which is significant for environmental protection and healthy consumption.</p>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serial Extraction of Pectin and Polyphenols From Watermelon Rind for Use in Strawberry Preservation Film\",\"authors\":\"Xiaolin Jin,&nbsp;Yue Han,&nbsp;Qingshen Sun\",\"doi\":\"10.1111/1750-3841.70216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The aim of this study was to extract watermelon rind (WR) pectin (WRP) and watermelon rind polyphenols (WRE) and evaluate the effect of pectin/sodium alginate composite films (WRPSA) with or without WRE on strawberry preservation. WRP was extracted using citric acid, whereas WRE was obtained through ethyl acetate extraction. The extracted WRP was characterized for composition and structural properties, multi-angle laser light scattering (MALLS), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), ζ-potential analysis, and rheological measurements. The pectin/SA film (WRPSA) and pectin/SA composite film containing WRE (WRPESA) were prepared. Both films were analyzed for physical properties and structurally characterized. Strawberries were wrapped with either WRPSA, WRPESA, or no treatment (exposed) and stored under lightproof conditions at 4°C for 12 days. The results showed that WRP was a low-ester pectin (degree of methylation [DM] = 38.7%) with a molecular weight of 683 kDa. WRP had typical polysaccharide characteristic peaks and good thermal stability that could be used as a film-forming substrate. WRPESA showed better mechanical strength and antioxidant capacity than that of WRPSA, indicating that WRE showed synergistic effects on the improvement of composite films. Additionally, WRPESA effectively reduced strawberry softening, color deterioration, and weight loss, in addition to the delay in the dynamic changes in sugar content and pH and accumulation of malondialdehyde (MDA). WRPESA also helped maintain the total phenolic content of the strawberries. These findings suggest that watermelon byproducts could be valorized for sustainable food packaging, reducing both agricultural waste and reliance on synthetic materials.</p>\\n <p><b>Practical Application</b>: This article confirmed the feasibility of a sequential extraction process for watermelon rind pectin and polyphenols, which can later be applied to industrial production lines to increase the utilization rate of watermelon rind. The practical application value of this research lies in the development of biodegradable packaging materials. By extracting pectin and polyphenols from watermelon rind, the resulting films can effectively extend the shelf life of strawberries and reduce food waste. Furthermore, this study promotes the utilization of agricultural waste, enhances the nutritional value of food, and provides new opportunities for local economic development. Additionally, it offers a scientific basis for advancing sustainable packaging technology and food preservation innovations, which is significant for environmental protection and healthy consumption.</p>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70216\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70216","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提取西瓜皮(WR)、果胶(WRP)和西瓜皮多酚(WRE),并评价果胶/海藻酸钠复合膜(WRPSA)对草莓保鲜效果的影响。WRP采用柠檬酸提取,WRE采用乙酸乙酯提取。通过多角度激光散射(MALLS)、傅里叶变换红外光谱(FTIR)、差示扫描量热(DSC)、x射线衍射(XRD)、ζ电位分析和流变学测试对提取的WRP进行了组成和结构性质表征。制备了果胶/SA膜(WRPSA)和含WRE的果胶/SA复合膜(WRPESA)。对两种薄膜进行了物理性能分析和结构表征。草莓分别用WRPSA、WRPESA或不处理(暴露)包裹,在4°C的避光条件下储存12天。结果表明,WRP为低酯果胶(甲基化度[DM] = 38.7%),分子量为683 kDa。WRP具有典型的多糖特征峰,热稳定性好,可作为成膜底物。WRPESA表现出比WRPSA更好的机械强度和抗氧化能力,表明WRE对复合膜的改善具有协同作用。此外,WRPESA有效地减缓了草莓的软化、变色和失重,延缓了糖含量和pH值的动态变化以及丙二醛(MDA)的积累。WRPESA还有助于维持草莓的总酚含量。这些发现表明,西瓜副产品可以用于可持续食品包装,减少农业浪费和对合成材料的依赖。实际应用:本文确定了西瓜皮果胶和多酚序贯提取工艺的可行性,可应用于工业生产线,提高西瓜皮的利用率。本研究的实际应用价值在于开发可生物降解的包装材料。从西瓜皮中提取果胶和多酚,制成薄膜,可以有效延长草莓的保质期,减少食物浪费。此外,该研究促进了农业废弃物的利用,提高了食品的营养价值,并为当地经济发展提供了新的机会。为推进可持续包装技术和食品保鲜创新提供了科学依据,对环境保护和健康消费具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Serial Extraction of Pectin and Polyphenols From Watermelon Rind for Use in Strawberry Preservation Film

Serial Extraction of Pectin and Polyphenols From Watermelon Rind for Use in Strawberry Preservation Film

The aim of this study was to extract watermelon rind (WR) pectin (WRP) and watermelon rind polyphenols (WRE) and evaluate the effect of pectin/sodium alginate composite films (WRPSA) with or without WRE on strawberry preservation. WRP was extracted using citric acid, whereas WRE was obtained through ethyl acetate extraction. The extracted WRP was characterized for composition and structural properties, multi-angle laser light scattering (MALLS), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), ζ-potential analysis, and rheological measurements. The pectin/SA film (WRPSA) and pectin/SA composite film containing WRE (WRPESA) were prepared. Both films were analyzed for physical properties and structurally characterized. Strawberries were wrapped with either WRPSA, WRPESA, or no treatment (exposed) and stored under lightproof conditions at 4°C for 12 days. The results showed that WRP was a low-ester pectin (degree of methylation [DM] = 38.7%) with a molecular weight of 683 kDa. WRP had typical polysaccharide characteristic peaks and good thermal stability that could be used as a film-forming substrate. WRPESA showed better mechanical strength and antioxidant capacity than that of WRPSA, indicating that WRE showed synergistic effects on the improvement of composite films. Additionally, WRPESA effectively reduced strawberry softening, color deterioration, and weight loss, in addition to the delay in the dynamic changes in sugar content and pH and accumulation of malondialdehyde (MDA). WRPESA also helped maintain the total phenolic content of the strawberries. These findings suggest that watermelon byproducts could be valorized for sustainable food packaging, reducing both agricultural waste and reliance on synthetic materials.

Practical Application: This article confirmed the feasibility of a sequential extraction process for watermelon rind pectin and polyphenols, which can later be applied to industrial production lines to increase the utilization rate of watermelon rind. The practical application value of this research lies in the development of biodegradable packaging materials. By extracting pectin and polyphenols from watermelon rind, the resulting films can effectively extend the shelf life of strawberries and reduce food waste. Furthermore, this study promotes the utilization of agricultural waste, enhances the nutritional value of food, and provides new opportunities for local economic development. Additionally, it offers a scientific basis for advancing sustainable packaging technology and food preservation innovations, which is significant for environmental protection and healthy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信