基于可视化基础模型的多场景泛化裂纹检测网络

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Shiwei Luo, Xiongyao Xie, Biao Zhou, Kun Zeng, Jun Guo
{"title":"基于可视化基础模型的多场景泛化裂纹检测网络","authors":"Shiwei Luo,&nbsp;Xiongyao Xie,&nbsp;Biao Zhou,&nbsp;Kun Zeng,&nbsp;Jun Guo","doi":"10.1155/stc/6269747","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Recently, convolutional neural networks (CNNs) and hybrid networks, which integrate CNN with Transformer, have been widely employed in structuring crack detection, effectively addressing the challenges of high-precision crack identification in controlled scenes. However, scene generalization remains a significant challenge for existing networks, especially under limited dataset conditions. With the rapid development of foundation models (like ChatGPT), achieving scene generalization has become feasible. In this paper, by taking tunnel crack detection as the background, the CraSAM network is proposed, which incorporates a foundation model-based encoder and a prompt transfer learning module. Based on six datasets including tunnel, bridge, building, and pavement, the CraSAM is compared with 15 state-of-the-art models, including Unet, DeepLabv3+, SSSeg, and TransUNet. It exhibits superior generalization capability both on few-sample learned and unlearned conditions. This work will benefit to investigate of new ways for the utilization of the visual foundation model in various professional fields.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6269747","citationCount":"0","resultStr":"{\"title\":\"Multiscenario Generalization Crack Detection Network Based on the Visual Foundation Model\",\"authors\":\"Shiwei Luo,&nbsp;Xiongyao Xie,&nbsp;Biao Zhou,&nbsp;Kun Zeng,&nbsp;Jun Guo\",\"doi\":\"10.1155/stc/6269747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Recently, convolutional neural networks (CNNs) and hybrid networks, which integrate CNN with Transformer, have been widely employed in structuring crack detection, effectively addressing the challenges of high-precision crack identification in controlled scenes. However, scene generalization remains a significant challenge for existing networks, especially under limited dataset conditions. With the rapid development of foundation models (like ChatGPT), achieving scene generalization has become feasible. In this paper, by taking tunnel crack detection as the background, the CraSAM network is proposed, which incorporates a foundation model-based encoder and a prompt transfer learning module. Based on six datasets including tunnel, bridge, building, and pavement, the CraSAM is compared with 15 state-of-the-art models, including Unet, DeepLabv3+, SSSeg, and TransUNet. It exhibits superior generalization capability both on few-sample learned and unlearned conditions. This work will benefit to investigate of new ways for the utilization of the visual foundation model in various professional fields.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6269747\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/6269747\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6269747","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,卷积神经网络(CNN)和将CNN与Transformer相结合的混合网络在结构化裂纹检测中得到了广泛应用,有效解决了受控场景下高精度裂纹识别的难题。然而,场景泛化仍然是现有网络的一个重大挑战,特别是在有限的数据集条件下。随着基础模型(如ChatGPT)的快速发展,实现场景泛化已经成为可能。本文以隧道裂缝检测为背景,提出了基于基础模型的编码器和提示迁移学习模块的CraSAM网络。基于隧道、桥梁、建筑和路面等6个数据集,CraSAM与Unet、DeepLabv3+、SSSeg和TransUNet等15个最先进的模型进行了比较。它在少样本学习和非学习条件下都表现出优异的泛化能力。本工作将有助于探索可视化基础模型在各专业领域应用的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscenario Generalization Crack Detection Network Based on the Visual Foundation Model

Multiscenario Generalization Crack Detection Network Based on the Visual Foundation Model

Recently, convolutional neural networks (CNNs) and hybrid networks, which integrate CNN with Transformer, have been widely employed in structuring crack detection, effectively addressing the challenges of high-precision crack identification in controlled scenes. However, scene generalization remains a significant challenge for existing networks, especially under limited dataset conditions. With the rapid development of foundation models (like ChatGPT), achieving scene generalization has become feasible. In this paper, by taking tunnel crack detection as the background, the CraSAM network is proposed, which incorporates a foundation model-based encoder and a prompt transfer learning module. Based on six datasets including tunnel, bridge, building, and pavement, the CraSAM is compared with 15 state-of-the-art models, including Unet, DeepLabv3+, SSSeg, and TransUNet. It exhibits superior generalization capability both on few-sample learned and unlearned conditions. This work will benefit to investigate of new ways for the utilization of the visual foundation model in various professional fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信