Shiwei Luo, Xiongyao Xie, Biao Zhou, Kun Zeng, Jun Guo
{"title":"基于可视化基础模型的多场景泛化裂纹检测网络","authors":"Shiwei Luo, Xiongyao Xie, Biao Zhou, Kun Zeng, Jun Guo","doi":"10.1155/stc/6269747","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Recently, convolutional neural networks (CNNs) and hybrid networks, which integrate CNN with Transformer, have been widely employed in structuring crack detection, effectively addressing the challenges of high-precision crack identification in controlled scenes. However, scene generalization remains a significant challenge for existing networks, especially under limited dataset conditions. With the rapid development of foundation models (like ChatGPT), achieving scene generalization has become feasible. In this paper, by taking tunnel crack detection as the background, the CraSAM network is proposed, which incorporates a foundation model-based encoder and a prompt transfer learning module. Based on six datasets including tunnel, bridge, building, and pavement, the CraSAM is compared with 15 state-of-the-art models, including Unet, DeepLabv3+, SSSeg, and TransUNet. It exhibits superior generalization capability both on few-sample learned and unlearned conditions. This work will benefit to investigate of new ways for the utilization of the visual foundation model in various professional fields.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6269747","citationCount":"0","resultStr":"{\"title\":\"Multiscenario Generalization Crack Detection Network Based on the Visual Foundation Model\",\"authors\":\"Shiwei Luo, Xiongyao Xie, Biao Zhou, Kun Zeng, Jun Guo\",\"doi\":\"10.1155/stc/6269747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Recently, convolutional neural networks (CNNs) and hybrid networks, which integrate CNN with Transformer, have been widely employed in structuring crack detection, effectively addressing the challenges of high-precision crack identification in controlled scenes. However, scene generalization remains a significant challenge for existing networks, especially under limited dataset conditions. With the rapid development of foundation models (like ChatGPT), achieving scene generalization has become feasible. In this paper, by taking tunnel crack detection as the background, the CraSAM network is proposed, which incorporates a foundation model-based encoder and a prompt transfer learning module. Based on six datasets including tunnel, bridge, building, and pavement, the CraSAM is compared with 15 state-of-the-art models, including Unet, DeepLabv3+, SSSeg, and TransUNet. It exhibits superior generalization capability both on few-sample learned and unlearned conditions. This work will benefit to investigate of new ways for the utilization of the visual foundation model in various professional fields.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6269747\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/6269747\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6269747","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Multiscenario Generalization Crack Detection Network Based on the Visual Foundation Model
Recently, convolutional neural networks (CNNs) and hybrid networks, which integrate CNN with Transformer, have been widely employed in structuring crack detection, effectively addressing the challenges of high-precision crack identification in controlled scenes. However, scene generalization remains a significant challenge for existing networks, especially under limited dataset conditions. With the rapid development of foundation models (like ChatGPT), achieving scene generalization has become feasible. In this paper, by taking tunnel crack detection as the background, the CraSAM network is proposed, which incorporates a foundation model-based encoder and a prompt transfer learning module. Based on six datasets including tunnel, bridge, building, and pavement, the CraSAM is compared with 15 state-of-the-art models, including Unet, DeepLabv3+, SSSeg, and TransUNet. It exhibits superior generalization capability both on few-sample learned and unlearned conditions. This work will benefit to investigate of new ways for the utilization of the visual foundation model in various professional fields.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.