{"title":"MAPbI3/ \\({\\mathbf{CuIn}_{x}}{\\mathbf{Ga}_{{1 - x}}}{\\mathbf{Se}_{2}}\\)异质结太阳能电池提高转换效率的计算研究","authors":"N. Mekhaznia, B. Zaidi, M. A. Tag, I. Saouane","doi":"10.1134/S1990793124701550","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on optimizing the performance of MAPbI<sub>3</sub>/<span>\\({\\text{CuI}}{{{\\text{n}}}_{x}}{\\text{G}}{{{\\text{a}}}_{{1 - x}}}{\\text{S}}{{{\\text{e}}}_{2}}\\)</span> heterojunction solar cells to achieve enhanced efficiency through computational simulations using SCAPS-1D. We investigated the influence of variations in the Ga/Ga + In ratio within<span>\\(~{\\text{CuI}}{{{\\text{n}}}_{x}}{\\text{G}}{{{\\text{a}}}_{{1 - x}}}{\\text{S}}{{{\\text{e}}}_{2}}\\)</span> the absorber layer on device performance. The simulation results revealed a direct correlation between the gallium content and the <i>J</i>–<i>V</i> parameters; we identified an optimum ratio that maximized the efficiency. Subsequently, we explored the effect of absorber layer thickness, acceptor density, interface defects, and operating temperature on device performance, focusing on the optimum gallium content in the <span>\\({\\text{CuI}}{{{\\text{n}}}_{x}}{\\text{G}}{{{\\text{a}}}_{{1 - x}}}{\\text{S}}{{{\\text{e}}}_{2}}\\)</span> layer. Under optimized conditions, the results indicate that adjusting the gallium content can significantly enhance the designed solar cell performance, resulting in impressive characteristics, including an open-circuit voltage of 1.2847 V, a short-circuit current density of 25.2992 mA/cm<sup>2</sup>, a fill factor of 89.54%, and an overall efficiency of 29.10%. These findings highlight the crucial significance of the gallium content and provide valuable insights for advancing sustainable photovoltaic technologies.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 1","pages":"76 - 84"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Study on Enhanced Conversion Efficiency of MAPbI3/\\\\({\\\\mathbf{CuIn}_{x}}{\\\\mathbf{Ga}_{{1 - x}}}{\\\\mathbf{Se}_{2}}\\\\) Heterojunction Solar Cells\",\"authors\":\"N. Mekhaznia, B. Zaidi, M. A. Tag, I. Saouane\",\"doi\":\"10.1134/S1990793124701550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on optimizing the performance of MAPbI<sub>3</sub>/<span>\\\\({\\\\text{CuI}}{{{\\\\text{n}}}_{x}}{\\\\text{G}}{{{\\\\text{a}}}_{{1 - x}}}{\\\\text{S}}{{{\\\\text{e}}}_{2}}\\\\)</span> heterojunction solar cells to achieve enhanced efficiency through computational simulations using SCAPS-1D. We investigated the influence of variations in the Ga/Ga + In ratio within<span>\\\\(~{\\\\text{CuI}}{{{\\\\text{n}}}_{x}}{\\\\text{G}}{{{\\\\text{a}}}_{{1 - x}}}{\\\\text{S}}{{{\\\\text{e}}}_{2}}\\\\)</span> the absorber layer on device performance. The simulation results revealed a direct correlation between the gallium content and the <i>J</i>–<i>V</i> parameters; we identified an optimum ratio that maximized the efficiency. Subsequently, we explored the effect of absorber layer thickness, acceptor density, interface defects, and operating temperature on device performance, focusing on the optimum gallium content in the <span>\\\\({\\\\text{CuI}}{{{\\\\text{n}}}_{x}}{\\\\text{G}}{{{\\\\text{a}}}_{{1 - x}}}{\\\\text{S}}{{{\\\\text{e}}}_{2}}\\\\)</span> layer. Under optimized conditions, the results indicate that adjusting the gallium content can significantly enhance the designed solar cell performance, resulting in impressive characteristics, including an open-circuit voltage of 1.2847 V, a short-circuit current density of 25.2992 mA/cm<sup>2</sup>, a fill factor of 89.54%, and an overall efficiency of 29.10%. These findings highlight the crucial significance of the gallium content and provide valuable insights for advancing sustainable photovoltaic technologies.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":\"19 1\",\"pages\":\"76 - 84\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793124701550\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124701550","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究的重点是通过SCAPS-1D的计算模拟,优化MAPbI3/ \({\text{CuI}}{{{\text{n}}}_{x}}{\text{G}}{{{\text{a}}}_{{1 - x}}}{\text{S}}{{{\text{e}}}_{2}}\)异质结太阳能电池的性能,以提高效率。我们研究了\(~{\text{CuI}}{{{\text{n}}}_{x}}{\text{G}}{{{\text{a}}}_{{1 - x}}}{\text{S}}{{{\text{e}}}_{2}}\)吸收层中Ga/Ga + in比值的变化对器件性能的影响。模拟结果表明,镓含量与J-V参数之间存在直接相关关系;我们确定了一个使效率最大化的最佳比例。随后,我们探索了吸收层厚度、受体密度、界面缺陷和工作温度对器件性能的影响,重点研究了\({\text{CuI}}{{{\text{n}}}_{x}}{\text{G}}{{{\text{a}}}_{{1 - x}}}{\text{S}}{{{\text{e}}}_{2}}\)层中最佳镓含量。结果表明,在优化条件下,调整镓含量可以显著提高设计的太阳能电池的性能,其开路电压为1.2847 V,短路电流密度为25.2992 mA/cm2,填充系数为89.54%, and an overall efficiency of 29.10%. These findings highlight the crucial significance of the gallium content and provide valuable insights for advancing sustainable photovoltaic technologies.
Computational Study on Enhanced Conversion Efficiency of MAPbI3/\({\mathbf{CuIn}_{x}}{\mathbf{Ga}_{{1 - x}}}{\mathbf{Se}_{2}}\) Heterojunction Solar Cells
This study focuses on optimizing the performance of MAPbI3/\({\text{CuI}}{{{\text{n}}}_{x}}{\text{G}}{{{\text{a}}}_{{1 - x}}}{\text{S}}{{{\text{e}}}_{2}}\) heterojunction solar cells to achieve enhanced efficiency through computational simulations using SCAPS-1D. We investigated the influence of variations in the Ga/Ga + In ratio within\(~{\text{CuI}}{{{\text{n}}}_{x}}{\text{G}}{{{\text{a}}}_{{1 - x}}}{\text{S}}{{{\text{e}}}_{2}}\) the absorber layer on device performance. The simulation results revealed a direct correlation between the gallium content and the J–V parameters; we identified an optimum ratio that maximized the efficiency. Subsequently, we explored the effect of absorber layer thickness, acceptor density, interface defects, and operating temperature on device performance, focusing on the optimum gallium content in the \({\text{CuI}}{{{\text{n}}}_{x}}{\text{G}}{{{\text{a}}}_{{1 - x}}}{\text{S}}{{{\text{e}}}_{2}}\) layer. Under optimized conditions, the results indicate that adjusting the gallium content can significantly enhance the designed solar cell performance, resulting in impressive characteristics, including an open-circuit voltage of 1.2847 V, a short-circuit current density of 25.2992 mA/cm2, a fill factor of 89.54%, and an overall efficiency of 29.10%. These findings highlight the crucial significance of the gallium content and provide valuable insights for advancing sustainable photovoltaic technologies.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.