十六种纯溶剂中的戊唑醇:溶解度、DFT 计算和分子动力学模拟

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Qiong He , Hongkun Zhao
{"title":"十六种纯溶剂中的戊唑醇:溶解度、DFT 计算和分子动力学模拟","authors":"Qiong He ,&nbsp;Hongkun Zhao","doi":"10.1016/j.molliq.2025.127610","DOIUrl":null,"url":null,"abstract":"<div><div>Pentoxifylline is a non-selective inhibitor of methylxanthine phosphodiesterase. Thermodynamic behavior along with the solubility of this drug plays a pivotal role in the solvent selection for liquid phase formulation, extraction and purification of pentoxifylline. The aim of the research is to study the solubility and thermodynamic aspects of pentoxifylline in numerous single solvents as well as inspect the solute–solvent interactions using the molecular dynamic simulation and DFT calculations. At atmospheric pressure and temperatures ranging from 278.15 to 318.15 K, this work determined the mole-fraction solubilities of pentoxifylline in ten different alcohols (2-pentanol, methanol, 1-propanol, ethanol, 1-hexanol, 2-butanol, 1-butanol, 1-pentanol, 1-heptanol, 2-propanol), three different esters (<em>n</em>-butyl acetate, <em>n</em>-propyl acetate, ethyl acetate), dimethyl sulfoxide, cyclohexane, and water. Solubility findings demonstrated that higher temperature improved solubility. It dissolved best in <em>n</em>-butyl acetate and worst in cyclohexane. In diverse neat solvents at a temperature of 298.15 K, the solubility data ranked as <em>n</em>-butyl acetate (28.41 × 10<sup>−3</sup>) &gt; ethyl acetate (21.55 × 10<sup>−3</sup>) &gt; 1-pentanol (18.95 × 10<sup>−3</sup>) &gt; <em>n</em>-propyl acetate (16.69 × 10<sup>−3</sup>) &gt; 1-hexanol (15.11 × 10<sup>−3</sup>) &gt; DMSO (13.66 × 10<sup>−3</sup>) &gt; 1-heptanol (13.18 × 10<sup>−3</sup>) &gt; methanol (11.66 × 10<sup>−3</sup>) &gt; 1-butanol (10.18 × 10<sup>−3</sup>) &gt; 2-butanol (9.102 × 10<sup>−3</sup>) &gt; 1-propanol (8.724 × 10<sup>−3</sup>) &gt; water (7.422 × 10<sup>−3</sup>) &gt; 2-propanol (6.057 × 10<sup>−3</sup>) &gt; ethanol (5.591 × 10<sup>−3</sup>) &gt; 2-pentanol (4.700 × 10<sup>−3</sup>) &gt; cyclohexane (0.09895 × 10<sup>−3</sup>). The solubility in solvent of water was most sensitive to temperature. From <em>T</em> = 278.15 to <em>T</em> = 318.15 K, it rose 76 times, from 0.7420 × 10<sup>−3</sup> to 56.32 × 10<sup>−3</sup>. Next, the data on pentoxifylline solubility in sixteen different solvents were correlated using the following models: NRTL, Wilson, Buchowski-Ksiazaczak <em>λh</em>, and Apelblat. All four models’ fitting results are satisfactory, with the Apelblat equation coming out on superior. 100<em>RAD</em> and 10<sup>4</sup><em>RMSD</em> values were all less than 7.73 and 1.76, respectively, with the exception of water. Molecular dynamic simulation and intermolecular interactions of pentoxifylline in various solvents were also performed. Finally, the thermodynamic apparent parameters were explored, and the findings showed that the pentoxifylline dissolution in the solvents under study is endothermic, with a stronger entropic driving force than an enthalpy driving force.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"429 ","pages":"Article 127610"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentoxifylline in sixteen pure solvents: Solubility, DFT calculation, and molecular dynamic simulation\",\"authors\":\"Qiong He ,&nbsp;Hongkun Zhao\",\"doi\":\"10.1016/j.molliq.2025.127610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pentoxifylline is a non-selective inhibitor of methylxanthine phosphodiesterase. Thermodynamic behavior along with the solubility of this drug plays a pivotal role in the solvent selection for liquid phase formulation, extraction and purification of pentoxifylline. The aim of the research is to study the solubility and thermodynamic aspects of pentoxifylline in numerous single solvents as well as inspect the solute–solvent interactions using the molecular dynamic simulation and DFT calculations. At atmospheric pressure and temperatures ranging from 278.15 to 318.15 K, this work determined the mole-fraction solubilities of pentoxifylline in ten different alcohols (2-pentanol, methanol, 1-propanol, ethanol, 1-hexanol, 2-butanol, 1-butanol, 1-pentanol, 1-heptanol, 2-propanol), three different esters (<em>n</em>-butyl acetate, <em>n</em>-propyl acetate, ethyl acetate), dimethyl sulfoxide, cyclohexane, and water. Solubility findings demonstrated that higher temperature improved solubility. It dissolved best in <em>n</em>-butyl acetate and worst in cyclohexane. In diverse neat solvents at a temperature of 298.15 K, the solubility data ranked as <em>n</em>-butyl acetate (28.41 × 10<sup>−3</sup>) &gt; ethyl acetate (21.55 × 10<sup>−3</sup>) &gt; 1-pentanol (18.95 × 10<sup>−3</sup>) &gt; <em>n</em>-propyl acetate (16.69 × 10<sup>−3</sup>) &gt; 1-hexanol (15.11 × 10<sup>−3</sup>) &gt; DMSO (13.66 × 10<sup>−3</sup>) &gt; 1-heptanol (13.18 × 10<sup>−3</sup>) &gt; methanol (11.66 × 10<sup>−3</sup>) &gt; 1-butanol (10.18 × 10<sup>−3</sup>) &gt; 2-butanol (9.102 × 10<sup>−3</sup>) &gt; 1-propanol (8.724 × 10<sup>−3</sup>) &gt; water (7.422 × 10<sup>−3</sup>) &gt; 2-propanol (6.057 × 10<sup>−3</sup>) &gt; ethanol (5.591 × 10<sup>−3</sup>) &gt; 2-pentanol (4.700 × 10<sup>−3</sup>) &gt; cyclohexane (0.09895 × 10<sup>−3</sup>). The solubility in solvent of water was most sensitive to temperature. From <em>T</em> = 278.15 to <em>T</em> = 318.15 K, it rose 76 times, from 0.7420 × 10<sup>−3</sup> to 56.32 × 10<sup>−3</sup>. Next, the data on pentoxifylline solubility in sixteen different solvents were correlated using the following models: NRTL, Wilson, Buchowski-Ksiazaczak <em>λh</em>, and Apelblat. All four models’ fitting results are satisfactory, with the Apelblat equation coming out on superior. 100<em>RAD</em> and 10<sup>4</sup><em>RMSD</em> values were all less than 7.73 and 1.76, respectively, with the exception of water. Molecular dynamic simulation and intermolecular interactions of pentoxifylline in various solvents were also performed. Finally, the thermodynamic apparent parameters were explored, and the findings showed that the pentoxifylline dissolution in the solvents under study is endothermic, with a stronger entropic driving force than an enthalpy driving force.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"429 \",\"pages\":\"Article 127610\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732225007822\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225007822","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

己酮茶碱是甲基黄嘌呤磷酸二酯酶的非选择性抑制剂。热力学行为和药物的溶解度对己酮茶碱液相配方、萃取纯化的溶剂选择起着关键作用。本研究的目的是研究己酮茶碱在多种单一溶剂中的溶解度和热力学方面,并使用分子动力学模拟和DFT计算检查溶质-溶剂相互作用。在278.15至318.15 K的大气压和温度下,本工作测定了己酮茶碱在十种不同醇(2-戊醇、甲醇、1-丙醇、乙醇、1-己醇、2-丁醇、1-丁醇、1-戊醇、1-庚醇、2-丙醇)、三种不同酯(乙酸正丁酯、乙酸正丙酯、乙酸乙酯)、二甲亚砜、环己烷和水中的溶解度。溶解度研究结果表明,温度升高可改善溶解度。在乙酸正丁酯中溶解最好,在环己烷中溶解最差。在298.15 K的各种纯溶剂中,其溶解度数据为:醋酸正丁酯(28.41 × 10−3)>;乙酸乙酯(21.55 × 10−3)>;1-戊醇(18.95 × 10−3)>;n-丙酯乙酸酯(16.69 × 10−3)>;-己醇(15.11 × 10−3)>;DMSO (13.66 × 10−3)>;1-庚醇(13.18 × 10−3)>;甲醇(11.66 × 10−3);-丁醇(10.18 × 10−3)>;-丁醇(9.102 × 10−3)>;1-丙醇(8.724 × 10−3)>;水(7.422 × 10−3)>;2-丙醇(6.057 × 10−3);乙醇(5.591 × 10−3);2-戊醇(4.700 × 10−3)>;环己烷(0.09895 × 10−3)。在水溶剂中的溶解度对温度最敏感。从T = 278.15到T = 318.15 K,从0.7420 × 10−3增加到56.32 × 10−3,增加了76倍。接下来,采用NRTL、Wilson、Buchowski-Ksiazaczak λh和Apelblat模型对己酮茶碱在16种不同溶剂中的溶解度数据进行相关性分析。四种模型的拟合结果均令人满意,其中Apelblat方程的拟合效果较好。除水外,100RAD和104RMSD值均小于7.73和1.76。对己酮茶碱在不同溶剂中的分子动力学模拟和分子间相互作用进行了研究。最后,对热力学表观参数进行了探讨,结果表明己酮茶碱在溶剂中的溶解是吸热的,熵驱动力大于焓驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pentoxifylline in sixteen pure solvents: Solubility, DFT calculation, and molecular dynamic simulation

Pentoxifylline in sixteen pure solvents: Solubility, DFT calculation, and molecular dynamic simulation
Pentoxifylline is a non-selective inhibitor of methylxanthine phosphodiesterase. Thermodynamic behavior along with the solubility of this drug plays a pivotal role in the solvent selection for liquid phase formulation, extraction and purification of pentoxifylline. The aim of the research is to study the solubility and thermodynamic aspects of pentoxifylline in numerous single solvents as well as inspect the solute–solvent interactions using the molecular dynamic simulation and DFT calculations. At atmospheric pressure and temperatures ranging from 278.15 to 318.15 K, this work determined the mole-fraction solubilities of pentoxifylline in ten different alcohols (2-pentanol, methanol, 1-propanol, ethanol, 1-hexanol, 2-butanol, 1-butanol, 1-pentanol, 1-heptanol, 2-propanol), three different esters (n-butyl acetate, n-propyl acetate, ethyl acetate), dimethyl sulfoxide, cyclohexane, and water. Solubility findings demonstrated that higher temperature improved solubility. It dissolved best in n-butyl acetate and worst in cyclohexane. In diverse neat solvents at a temperature of 298.15 K, the solubility data ranked as n-butyl acetate (28.41 × 10−3) > ethyl acetate (21.55 × 10−3) > 1-pentanol (18.95 × 10−3) > n-propyl acetate (16.69 × 10−3) > 1-hexanol (15.11 × 10−3) > DMSO (13.66 × 10−3) > 1-heptanol (13.18 × 10−3) > methanol (11.66 × 10−3) > 1-butanol (10.18 × 10−3) > 2-butanol (9.102 × 10−3) > 1-propanol (8.724 × 10−3) > water (7.422 × 10−3) > 2-propanol (6.057 × 10−3) > ethanol (5.591 × 10−3) > 2-pentanol (4.700 × 10−3) > cyclohexane (0.09895 × 10−3). The solubility in solvent of water was most sensitive to temperature. From T = 278.15 to T = 318.15 K, it rose 76 times, from 0.7420 × 10−3 to 56.32 × 10−3. Next, the data on pentoxifylline solubility in sixteen different solvents were correlated using the following models: NRTL, Wilson, Buchowski-Ksiazaczak λh, and Apelblat. All four models’ fitting results are satisfactory, with the Apelblat equation coming out on superior. 100RAD and 104RMSD values were all less than 7.73 and 1.76, respectively, with the exception of water. Molecular dynamic simulation and intermolecular interactions of pentoxifylline in various solvents were also performed. Finally, the thermodynamic apparent parameters were explored, and the findings showed that the pentoxifylline dissolution in the solvents under study is endothermic, with a stronger entropic driving force than an enthalpy driving force.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信