Guo-Ren Xia , Tengfei Wang , Jun Xu , Xiaoyang Li , Hongzhi Wang , Stephen T.C. Wong , Hai Li
{"title":"用于在 CT 引导下进行肺癌介入治疗时准确预测呼吸运动的新型群体特征加权稀疏模型","authors":"Guo-Ren Xia , Tengfei Wang , Jun Xu , Xiaoyang Li , Hongzhi Wang , Stephen T.C. Wong , Hai Li","doi":"10.1016/j.compmedimag.2025.102557","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102557"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel population-characteristic weighted sparse model for accurate respiratory motion prediction in CT-guided lung cancer interventions\",\"authors\":\"Guo-Ren Xia , Tengfei Wang , Jun Xu , Xiaoyang Li , Hongzhi Wang , Stephen T.C. Wong , Hai Li\",\"doi\":\"10.1016/j.compmedimag.2025.102557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"123 \",\"pages\":\"Article 102557\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125000667\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000667","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A novel population-characteristic weighted sparse model for accurate respiratory motion prediction in CT-guided lung cancer interventions
Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.