{"title":"大变形问题中连续体与壳单元的直接耦合","authors":"Astrid Pechstein , Michael Neunteufel","doi":"10.1016/j.cma.2025.118002","DOIUrl":null,"url":null,"abstract":"<div><div>In many applications, thin shell-like structures are integrated within or attached to volumetric bodies. This includes reinforcements placed in soft matrix material in lightweight structure design, or hollow structures that are partially or completely filled. Finite element simulations of such setups are highly challenging. A brute force discretization of structural as well as volumetric parts using well-shaped three-dimensional elements may be accurate, but leads to problems of enormous computational complexity even for simple models. One desired alternative is the use of shell elements for thin-walled parts, as such a discretization greatly alleviates size restrictions on the underlying finite element mesh. However, the coupling of different formulations within a single framework is often not straightforward and may lead to locking if not done carefully. Neunteufel and Schöberl proposed a mixed shell element where, apart from displacements of the center surface, bending moments are used as independent unknowns. These elements were not only shown to be locking free and highly accurate in large-deformation regime, but also do not require differentiability of the shell surface and can handle kinked and branched shell structures. They can directly be coupled to classical volume elements of arbitrary order by sharing displacement degrees of freedom at the center surface, thus achieving the desired coupled discretization. As the elements can be used on unstructured meshes, adaptive mesh refinement based on local stress and bending moments can be used. We present computational results that confirm exceptional accuracy for problems where thin-walled structures are embedded as reinforcements within soft matrix material.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"442 ","pages":"Article 118002"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct coupling of continuum and shell elements in large deformation problems\",\"authors\":\"Astrid Pechstein , Michael Neunteufel\",\"doi\":\"10.1016/j.cma.2025.118002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In many applications, thin shell-like structures are integrated within or attached to volumetric bodies. This includes reinforcements placed in soft matrix material in lightweight structure design, or hollow structures that are partially or completely filled. Finite element simulations of such setups are highly challenging. A brute force discretization of structural as well as volumetric parts using well-shaped three-dimensional elements may be accurate, but leads to problems of enormous computational complexity even for simple models. One desired alternative is the use of shell elements for thin-walled parts, as such a discretization greatly alleviates size restrictions on the underlying finite element mesh. However, the coupling of different formulations within a single framework is often not straightforward and may lead to locking if not done carefully. Neunteufel and Schöberl proposed a mixed shell element where, apart from displacements of the center surface, bending moments are used as independent unknowns. These elements were not only shown to be locking free and highly accurate in large-deformation regime, but also do not require differentiability of the shell surface and can handle kinked and branched shell structures. They can directly be coupled to classical volume elements of arbitrary order by sharing displacement degrees of freedom at the center surface, thus achieving the desired coupled discretization. As the elements can be used on unstructured meshes, adaptive mesh refinement based on local stress and bending moments can be used. We present computational results that confirm exceptional accuracy for problems where thin-walled structures are embedded as reinforcements within soft matrix material.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"442 \",\"pages\":\"Article 118002\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525002749\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002749","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct coupling of continuum and shell elements in large deformation problems
In many applications, thin shell-like structures are integrated within or attached to volumetric bodies. This includes reinforcements placed in soft matrix material in lightweight structure design, or hollow structures that are partially or completely filled. Finite element simulations of such setups are highly challenging. A brute force discretization of structural as well as volumetric parts using well-shaped three-dimensional elements may be accurate, but leads to problems of enormous computational complexity even for simple models. One desired alternative is the use of shell elements for thin-walled parts, as such a discretization greatly alleviates size restrictions on the underlying finite element mesh. However, the coupling of different formulations within a single framework is often not straightforward and may lead to locking if not done carefully. Neunteufel and Schöberl proposed a mixed shell element where, apart from displacements of the center surface, bending moments are used as independent unknowns. These elements were not only shown to be locking free and highly accurate in large-deformation regime, but also do not require differentiability of the shell surface and can handle kinked and branched shell structures. They can directly be coupled to classical volume elements of arbitrary order by sharing displacement degrees of freedom at the center surface, thus achieving the desired coupled discretization. As the elements can be used on unstructured meshes, adaptive mesh refinement based on local stress and bending moments can be used. We present computational results that confirm exceptional accuracy for problems where thin-walled structures are embedded as reinforcements within soft matrix material.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.