{"title":"从火灾现场的低分辨率热图像进行温度预测和校正的数据驱动算法","authors":"Yichuan Dong, Jian Jiang, Wei Chen, Jihong Ye","doi":"10.1016/j.eswa.2025.127771","DOIUrl":null,"url":null,"abstract":"<div><div>An accurate and efficient temperature measurement at fire scenes is crucial for structural safety predictions and fire emergency responses. The application of thermal images provides advantages of spatial and stable measurements over thermocouples. A data-driven algorithmic system for temperature measurement is proposed, utilizing thermal images and comprising a sequence of resolution enhancements, temperature predictions, and error corrections. The system starts with transformation of low-resolution images to super-resolution ones through convolutional neural networks (CNN) with hybrid scaling factors and attention fusion post-residual blocks. The temperatures are predicted from super-resolution thermal images based on cascade feedforward neural networks (CFNN) using a two-stage temperature division strategy. The errors of temperature predictions are corrected by comparing results between thermal images and thermocouples. The effectiveness, influencing factor and optimization strategy of the proposed system are validated through a series of large-scale fire tests. The mean absolute errors of temperature prediction models are within 20 °C, while over 70 % of error correction results are within ±30 °C. The proposed algorithm provides an effective tool to predict and correct temperature fields, aiming at a fast and smart fire emergency decision-making.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"282 ","pages":"Article 127771"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven algorithm for temperature predictions and corrections from low-resolution thermal images at fire scenes\",\"authors\":\"Yichuan Dong, Jian Jiang, Wei Chen, Jihong Ye\",\"doi\":\"10.1016/j.eswa.2025.127771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An accurate and efficient temperature measurement at fire scenes is crucial for structural safety predictions and fire emergency responses. The application of thermal images provides advantages of spatial and stable measurements over thermocouples. A data-driven algorithmic system for temperature measurement is proposed, utilizing thermal images and comprising a sequence of resolution enhancements, temperature predictions, and error corrections. The system starts with transformation of low-resolution images to super-resolution ones through convolutional neural networks (CNN) with hybrid scaling factors and attention fusion post-residual blocks. The temperatures are predicted from super-resolution thermal images based on cascade feedforward neural networks (CFNN) using a two-stage temperature division strategy. The errors of temperature predictions are corrected by comparing results between thermal images and thermocouples. The effectiveness, influencing factor and optimization strategy of the proposed system are validated through a series of large-scale fire tests. The mean absolute errors of temperature prediction models are within 20 °C, while over 70 % of error correction results are within ±30 °C. The proposed algorithm provides an effective tool to predict and correct temperature fields, aiming at a fast and smart fire emergency decision-making.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"282 \",\"pages\":\"Article 127771\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425013934\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425013934","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data-driven algorithm for temperature predictions and corrections from low-resolution thermal images at fire scenes
An accurate and efficient temperature measurement at fire scenes is crucial for structural safety predictions and fire emergency responses. The application of thermal images provides advantages of spatial and stable measurements over thermocouples. A data-driven algorithmic system for temperature measurement is proposed, utilizing thermal images and comprising a sequence of resolution enhancements, temperature predictions, and error corrections. The system starts with transformation of low-resolution images to super-resolution ones through convolutional neural networks (CNN) with hybrid scaling factors and attention fusion post-residual blocks. The temperatures are predicted from super-resolution thermal images based on cascade feedforward neural networks (CFNN) using a two-stage temperature division strategy. The errors of temperature predictions are corrected by comparing results between thermal images and thermocouples. The effectiveness, influencing factor and optimization strategy of the proposed system are validated through a series of large-scale fire tests. The mean absolute errors of temperature prediction models are within 20 °C, while over 70 % of error correction results are within ±30 °C. The proposed algorithm provides an effective tool to predict and correct temperature fields, aiming at a fast and smart fire emergency decision-making.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.