Meyer小波神经网络程序预测,受电弓和延迟奇异模型

Zulqurnain Sabir , Hafiz Abdul Wahab , Mohamed R. Ali , Shahid Ahmad Bhat
{"title":"Meyer小波神经网络程序预测,受电弓和延迟奇异模型","authors":"Zulqurnain Sabir ,&nbsp;Hafiz Abdul Wahab ,&nbsp;Mohamed R. Ali ,&nbsp;Shahid Ahmad Bhat","doi":"10.1016/j.iswa.2024.200457","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims the numerical solutions of the nonlinear form of prediction, pantograph, and delayed differential singular models (NPPD-DSMs) by exploiting the Meyer wavelet neural networks (MWNNs). The optimization is accomplished using the local and global search paradigms of active-set approach (ASA) and genetic algorithm (GA), i.e., MWNNs-GA-ASA. An objective function is designed using the NPPD-MSMs and the corresponding boundary conditions, which is optimized through the GA-ASA paradigms. The obtained numerical outcomes of the NPPD-MSMs are compared with the true results to observe the correctness of the designed MWNNs-GA-ASA. The absolute error in good measures, i.e., negligible, for solving the NPPD-DSMs is plotted, which shows the stability and effectiveness of the MWNNs-GA-ASA. For the reliability of the procedure, the performances through different statistical operators have been presented for multiple trials to solve the NPPD-NSMs.</div><div>Mathematics Subject Classification. Primary 68T07; Secondary 03D15, 90C60.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200457"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Meyer wavelet neural networks procedure for prediction, pantograph and delayed singular models\",\"authors\":\"Zulqurnain Sabir ,&nbsp;Hafiz Abdul Wahab ,&nbsp;Mohamed R. Ali ,&nbsp;Shahid Ahmad Bhat\",\"doi\":\"10.1016/j.iswa.2024.200457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims the numerical solutions of the nonlinear form of prediction, pantograph, and delayed differential singular models (NPPD-DSMs) by exploiting the Meyer wavelet neural networks (MWNNs). The optimization is accomplished using the local and global search paradigms of active-set approach (ASA) and genetic algorithm (GA), i.e., MWNNs-GA-ASA. An objective function is designed using the NPPD-MSMs and the corresponding boundary conditions, which is optimized through the GA-ASA paradigms. The obtained numerical outcomes of the NPPD-MSMs are compared with the true results to observe the correctness of the designed MWNNs-GA-ASA. The absolute error in good measures, i.e., negligible, for solving the NPPD-DSMs is plotted, which shows the stability and effectiveness of the MWNNs-GA-ASA. For the reliability of the procedure, the performances through different statistical operators have been presented for multiple trials to solve the NPPD-NSMs.</div><div>Mathematics Subject Classification. Primary 68T07; Secondary 03D15, 90C60.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"26 \",\"pages\":\"Article 200457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作旨在利用Meyer小波神经网络(MWNNs)对非线性形式的预测、受电弓和延迟微分奇异模型(NPPD-DSMs)进行数值求解。优化采用活动集方法(ASA)和遗传算法(GA)的局部和全局搜索范式,即MWNNs-GA-ASA。利用nppd - msm和相应的边界条件设计了目标函数,并通过GA-ASA范式进行了优化。将nppd - mmsms的数值结果与实际结果进行了比较,以观察所设计的MWNNs-GA-ASA的正确性。绘制了求解NPPD-DSMs的好度量的绝对误差,即可以忽略不计,这表明了MWNNs-GA-ASA的稳定性和有效性。为了提高该方法的可靠性,在求解nppd - nsm的多次试验中,给出了不同统计算子的性能。数学学科分类。主68 t07;二级03D15, 90C60。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Meyer wavelet neural networks procedure for prediction, pantograph and delayed singular models
This work aims the numerical solutions of the nonlinear form of prediction, pantograph, and delayed differential singular models (NPPD-DSMs) by exploiting the Meyer wavelet neural networks (MWNNs). The optimization is accomplished using the local and global search paradigms of active-set approach (ASA) and genetic algorithm (GA), i.e., MWNNs-GA-ASA. An objective function is designed using the NPPD-MSMs and the corresponding boundary conditions, which is optimized through the GA-ASA paradigms. The obtained numerical outcomes of the NPPD-MSMs are compared with the true results to observe the correctness of the designed MWNNs-GA-ASA. The absolute error in good measures, i.e., negligible, for solving the NPPD-DSMs is plotted, which shows the stability and effectiveness of the MWNNs-GA-ASA. For the reliability of the procedure, the performances through different statistical operators have been presented for multiple trials to solve the NPPD-NSMs.
Mathematics Subject Classification. Primary 68T07; Secondary 03D15, 90C60.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信