Xuhao Cui , Yapeng Liu , Xiuli Du , Hong Xiao , Hongbin Xu , Yanliang Du
{"title":"断层位错对隧道无砟轨道结构变形与破坏行为的影响","authors":"Xuhao Cui , Yapeng Liu , Xiuli Du , Hong Xiao , Hongbin Xu , Yanliang Du","doi":"10.1016/j.trgeo.2025.101561","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the mechanical behavior of slab track structures within railway tunnels that traverse fault zones. By combining the concrete damaged plasticity (CDP) model with the finite element method, a coupled simulation model of the slab track-tunnel-surrounding rock system has been established. The analysis primarily centers on the effects of fault dislocation on the stress, deformation, and damage characteristics of both CRTS II and CRTS III slab tracks, with the former featuring longitudinally connected track slabs and the latter characterized by unit-type track slabs. The results demonstrate that under normal fault dislocation, track irregularity, structural damage, and the interlayer gap all increase as fault displacement grows. Owing to its relatively higher structural stiffness, the CRTS II slab track is more susceptible to stress concentration, thereby leading to more severe damage to the track slab and base plate, as well as larger interlayer gaps. Specifically, the maximum damage variable of the track slab in the CRTS II slab track is 16 times that of the CRTS III slab track, and its maximum interlayer gap is 1.3 times larger than that of CRTS III slab track. By contrast, the unit-type design of the CRTS III slab track endows it with better adaptability to foundation deformation and mitigates stress concentration. However, this design leads to more increased track irregularity. The maximum upward bending deflection of the rail on the hanging wall side of the fault in the CRTS III slab track is twice as large as that of the CRTS II slab track. Under reverse fault dislocation, compared to normal fault dislocation, the compressive effects reduce structural damage, yet the trends of deformation and interlayer contact remain consistent with the variation of fault displacement. This research offers valuable insights for the design and maintenance of high-speed railway tracks within tunnels that cross fault zones.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"52 ","pages":"Article 101561"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of fault dislocation on the deformation and damage behavior of ballastless track structures in tunnels\",\"authors\":\"Xuhao Cui , Yapeng Liu , Xiuli Du , Hong Xiao , Hongbin Xu , Yanliang Du\",\"doi\":\"10.1016/j.trgeo.2025.101561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on the mechanical behavior of slab track structures within railway tunnels that traverse fault zones. By combining the concrete damaged plasticity (CDP) model with the finite element method, a coupled simulation model of the slab track-tunnel-surrounding rock system has been established. The analysis primarily centers on the effects of fault dislocation on the stress, deformation, and damage characteristics of both CRTS II and CRTS III slab tracks, with the former featuring longitudinally connected track slabs and the latter characterized by unit-type track slabs. The results demonstrate that under normal fault dislocation, track irregularity, structural damage, and the interlayer gap all increase as fault displacement grows. Owing to its relatively higher structural stiffness, the CRTS II slab track is more susceptible to stress concentration, thereby leading to more severe damage to the track slab and base plate, as well as larger interlayer gaps. Specifically, the maximum damage variable of the track slab in the CRTS II slab track is 16 times that of the CRTS III slab track, and its maximum interlayer gap is 1.3 times larger than that of CRTS III slab track. By contrast, the unit-type design of the CRTS III slab track endows it with better adaptability to foundation deformation and mitigates stress concentration. However, this design leads to more increased track irregularity. The maximum upward bending deflection of the rail on the hanging wall side of the fault in the CRTS III slab track is twice as large as that of the CRTS II slab track. Under reverse fault dislocation, compared to normal fault dislocation, the compressive effects reduce structural damage, yet the trends of deformation and interlayer contact remain consistent with the variation of fault displacement. This research offers valuable insights for the design and maintenance of high-speed railway tracks within tunnels that cross fault zones.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"52 \",\"pages\":\"Article 101561\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225000807\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000807","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effect of fault dislocation on the deformation and damage behavior of ballastless track structures in tunnels
This study focuses on the mechanical behavior of slab track structures within railway tunnels that traverse fault zones. By combining the concrete damaged plasticity (CDP) model with the finite element method, a coupled simulation model of the slab track-tunnel-surrounding rock system has been established. The analysis primarily centers on the effects of fault dislocation on the stress, deformation, and damage characteristics of both CRTS II and CRTS III slab tracks, with the former featuring longitudinally connected track slabs and the latter characterized by unit-type track slabs. The results demonstrate that under normal fault dislocation, track irregularity, structural damage, and the interlayer gap all increase as fault displacement grows. Owing to its relatively higher structural stiffness, the CRTS II slab track is more susceptible to stress concentration, thereby leading to more severe damage to the track slab and base plate, as well as larger interlayer gaps. Specifically, the maximum damage variable of the track slab in the CRTS II slab track is 16 times that of the CRTS III slab track, and its maximum interlayer gap is 1.3 times larger than that of CRTS III slab track. By contrast, the unit-type design of the CRTS III slab track endows it with better adaptability to foundation deformation and mitigates stress concentration. However, this design leads to more increased track irregularity. The maximum upward bending deflection of the rail on the hanging wall side of the fault in the CRTS III slab track is twice as large as that of the CRTS II slab track. Under reverse fault dislocation, compared to normal fault dislocation, the compressive effects reduce structural damage, yet the trends of deformation and interlayer contact remain consistent with the variation of fault displacement. This research offers valuable insights for the design and maintenance of high-speed railway tracks within tunnels that cross fault zones.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.