S. Pescuma , G. Gabard , T. Chaumont-Frelet , A. Modave
{"title":"非均质介质中时谐声学问题的带传输变量的可杂化不连续伽辽金方法","authors":"S. Pescuma , G. Gabard , T. Chaumont-Frelet , A. Modave","doi":"10.1016/j.jcp.2025.114009","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the finite element solution of time-harmonic wave propagation problems in heterogeneous media with hybridizable discontinuous Galerkin (HDG) methods. In the case of homogeneous media, it has been observed that the iterative solution of the linear system can be accelerated by hybridizing with transmission variables instead of numerical traces, as performed in standard approaches. In this work, we extend the HDG method with transmission variables, which is called the CHDG method, to the heterogeneous case with piecewise constant physical coefficients. In particular, we consider formulations with standard upwind and general symmetric fluxes. The CHDG hybridized system can be written as a fixed-point problem, which can be solved with stationary iterative schemes for a class of symmetric fluxes. The standard HDG and CHDG methods are systematically studied with the different numerical fluxes by considering a series of 2D numerical benchmarks. The convergence of standard iterative schemes is always faster with the extended CHDG method than with the standard HDG methods, with upwind and scalar symmetric fluxes.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"534 ","pages":"Article 114009"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybridizable discontinuous Galerkin method with transmission variables for time-harmonic acoustic problems in heterogeneous media\",\"authors\":\"S. Pescuma , G. Gabard , T. Chaumont-Frelet , A. Modave\",\"doi\":\"10.1016/j.jcp.2025.114009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the finite element solution of time-harmonic wave propagation problems in heterogeneous media with hybridizable discontinuous Galerkin (HDG) methods. In the case of homogeneous media, it has been observed that the iterative solution of the linear system can be accelerated by hybridizing with transmission variables instead of numerical traces, as performed in standard approaches. In this work, we extend the HDG method with transmission variables, which is called the CHDG method, to the heterogeneous case with piecewise constant physical coefficients. In particular, we consider formulations with standard upwind and general symmetric fluxes. The CHDG hybridized system can be written as a fixed-point problem, which can be solved with stationary iterative schemes for a class of symmetric fluxes. The standard HDG and CHDG methods are systematically studied with the different numerical fluxes by considering a series of 2D numerical benchmarks. The convergence of standard iterative schemes is always faster with the extended CHDG method than with the standard HDG methods, with upwind and scalar symmetric fluxes.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"534 \",\"pages\":\"Article 114009\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002199912500292X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500292X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A hybridizable discontinuous Galerkin method with transmission variables for time-harmonic acoustic problems in heterogeneous media
We consider the finite element solution of time-harmonic wave propagation problems in heterogeneous media with hybridizable discontinuous Galerkin (HDG) methods. In the case of homogeneous media, it has been observed that the iterative solution of the linear system can be accelerated by hybridizing with transmission variables instead of numerical traces, as performed in standard approaches. In this work, we extend the HDG method with transmission variables, which is called the CHDG method, to the heterogeneous case with piecewise constant physical coefficients. In particular, we consider formulations with standard upwind and general symmetric fluxes. The CHDG hybridized system can be written as a fixed-point problem, which can be solved with stationary iterative schemes for a class of symmetric fluxes. The standard HDG and CHDG methods are systematically studied with the different numerical fluxes by considering a series of 2D numerical benchmarks. The convergence of standard iterative schemes is always faster with the extended CHDG method than with the standard HDG methods, with upwind and scalar symmetric fluxes.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.