GoRINNs: Godunov-Riemann通知神经网络用于学习双曲守恒定律

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dimitrios G. Patsatzis , Mario di Bernardo , Lucia Russo , Constantinos Siettos
{"title":"GoRINNs: Godunov-Riemann通知神经网络用于学习双曲守恒定律","authors":"Dimitrios G. Patsatzis ,&nbsp;Mario di Bernardo ,&nbsp;Lucia Russo ,&nbsp;Constantinos Siettos","doi":"10.1016/j.jcp.2025.114002","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce Godunov-Riemann Informed Neural Networks (GoRINNs), a hybrid framework that combines shallow neural networks with high-resolution finite volume (FV) Godunov-type schemes to solve inverse problems in nonlinear conservation laws. In contrast to other proposed - based on deep neural networks - schemes, that learn numerical fluxes of conservative FV methods or model parameters, GoRINNs directly learn physical flux functions using <em>numerical analysis- informed</em> shallow neural networks, preserving conservation laws while reducing computational complexity. Using second-order accurate schemes with flux limiters and approximate Riemann solvers (satisfying the Rankine-Hugoniot condition), GoRINNs demonstrate high accuracy across benchmark problems such as Burgers', Shallow Water, Lighthill-Whitham-Richards, and Payne-Whitham traffic flow models, showcasing a robust and interpretable approach to integrating machine learning with classical numerical methods. An uncertainty quantification was also conducted by evaluating training performance variability across multiple realizations, each with different randomly sampled datasets and initial parameter values.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"534 ","pages":"Article 114002"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GoRINNs: Godunov-Riemann informed neural networks for learning hyperbolic conservation laws\",\"authors\":\"Dimitrios G. Patsatzis ,&nbsp;Mario di Bernardo ,&nbsp;Lucia Russo ,&nbsp;Constantinos Siettos\",\"doi\":\"10.1016/j.jcp.2025.114002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce Godunov-Riemann Informed Neural Networks (GoRINNs), a hybrid framework that combines shallow neural networks with high-resolution finite volume (FV) Godunov-type schemes to solve inverse problems in nonlinear conservation laws. In contrast to other proposed - based on deep neural networks - schemes, that learn numerical fluxes of conservative FV methods or model parameters, GoRINNs directly learn physical flux functions using <em>numerical analysis- informed</em> shallow neural networks, preserving conservation laws while reducing computational complexity. Using second-order accurate schemes with flux limiters and approximate Riemann solvers (satisfying the Rankine-Hugoniot condition), GoRINNs demonstrate high accuracy across benchmark problems such as Burgers', Shallow Water, Lighthill-Whitham-Richards, and Payne-Whitham traffic flow models, showcasing a robust and interpretable approach to integrating machine learning with classical numerical methods. An uncertainty quantification was also conducted by evaluating training performance variability across multiple realizations, each with different randomly sampled datasets and initial parameter values.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"534 \",\"pages\":\"Article 114002\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125002852\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002852","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了Godunov-Riemann通知神经网络(GoRINNs),这是一种混合框架,结合了浅神经网络和高分辨率有限体积(FV) godunov型格式来解决非线性守恒律中的逆问题。与其他提出的基于深度神经网络的方案(学习保守FV方法或模型参数的数值通量)相比,GoRINNs直接使用数值分析信息的浅神经网络学习物理通量函数,在降低计算复杂性的同时保留了守恒定律。使用二阶精确的通量限制器和近似黎曼解算器(满足Rankine-Hugoniot条件),GoRINNs在基准问题(如Burgers', Shallow Water, lighhill - whitham - richards和Payne-Whitham交通流模型)中表现出很高的准确性,展示了将机器学习与经典数值方法相结合的强大且可解释的方法。通过评估多个实现(每个实现具有不同的随机采样数据集和初始参数值)之间的训练性能可变性,还进行了不确定性量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GoRINNs: Godunov-Riemann informed neural networks for learning hyperbolic conservation laws
We introduce Godunov-Riemann Informed Neural Networks (GoRINNs), a hybrid framework that combines shallow neural networks with high-resolution finite volume (FV) Godunov-type schemes to solve inverse problems in nonlinear conservation laws. In contrast to other proposed - based on deep neural networks - schemes, that learn numerical fluxes of conservative FV methods or model parameters, GoRINNs directly learn physical flux functions using numerical analysis- informed shallow neural networks, preserving conservation laws while reducing computational complexity. Using second-order accurate schemes with flux limiters and approximate Riemann solvers (satisfying the Rankine-Hugoniot condition), GoRINNs demonstrate high accuracy across benchmark problems such as Burgers', Shallow Water, Lighthill-Whitham-Richards, and Payne-Whitham traffic flow models, showcasing a robust and interpretable approach to integrating machine learning with classical numerical methods. An uncertainty quantification was also conducted by evaluating training performance variability across multiple realizations, each with different randomly sampled datasets and initial parameter values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信