Alejandro Gómez-Echavarría , Juan P. Ugarte , Catalina Tobón
{"title":"电图中的非稳态成分在三维人体心房模型中定位致心律失常基质","authors":"Alejandro Gómez-Echavarría , Juan P. Ugarte , Catalina Tobón","doi":"10.1016/j.compbiomed.2025.110126","DOIUrl":null,"url":null,"abstract":"<div><div>Catheter ablation, as a treatment for atrial fibrillation (AF), often yields low success rates in the advanced stages of the arrhythmia. Ablation procedures are guided by atrial mapping using electrogram (EGM) signals, which reflect local electrical activations. The primary goal is to identify arrhythmogenic mechanisms, such as rotors, to serve as ablation targets. Given the chaotic nature of AF propagation, these electrical activations occur at variable rates. This work introduces a novel signal processing approach based on the fractional Fourier transform (FrFT) to characterize the non-stationary content in EGM signals. A 3D biophysical and anatomical model of human atria was used to simulate AF, and unipolar EGMs were calculated. The FrFT-based algorithm was applied to all EGM signals, estimating the optimal FrFT order to capture linear frequency modulations. Electroanatomical maps of these optimal FrFT orders were generated. Results revealed that the AF EGMs exhibit non-stationarity, which can be characterized using the FrFT. Rotors displayed a distinct pattern of non-stationarity, allowing for dynamic tracking, while transient mechanisms were identifiable through variations in the FrFT order, showing different patterns than those of rotors. As a generalization of the classical Fourier analysis, FrFT mapping offers clinically interpretable insights into the rate of change in EGM frequency content over time. This method proves valuable for characterizing AF spatiotemporal dynamics by leveraging the non-stationary information inherent in fibrillatory propagation.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110126"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary components in Electrograms localize arrhythmogenic substrates in a 3D model of human atria\",\"authors\":\"Alejandro Gómez-Echavarría , Juan P. Ugarte , Catalina Tobón\",\"doi\":\"10.1016/j.compbiomed.2025.110126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Catheter ablation, as a treatment for atrial fibrillation (AF), often yields low success rates in the advanced stages of the arrhythmia. Ablation procedures are guided by atrial mapping using electrogram (EGM) signals, which reflect local electrical activations. The primary goal is to identify arrhythmogenic mechanisms, such as rotors, to serve as ablation targets. Given the chaotic nature of AF propagation, these electrical activations occur at variable rates. This work introduces a novel signal processing approach based on the fractional Fourier transform (FrFT) to characterize the non-stationary content in EGM signals. A 3D biophysical and anatomical model of human atria was used to simulate AF, and unipolar EGMs were calculated. The FrFT-based algorithm was applied to all EGM signals, estimating the optimal FrFT order to capture linear frequency modulations. Electroanatomical maps of these optimal FrFT orders were generated. Results revealed that the AF EGMs exhibit non-stationarity, which can be characterized using the FrFT. Rotors displayed a distinct pattern of non-stationarity, allowing for dynamic tracking, while transient mechanisms were identifiable through variations in the FrFT order, showing different patterns than those of rotors. As a generalization of the classical Fourier analysis, FrFT mapping offers clinically interpretable insights into the rate of change in EGM frequency content over time. This method proves valuable for characterizing AF spatiotemporal dynamics by leveraging the non-stationary information inherent in fibrillatory propagation.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110126\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525004779\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525004779","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Non-stationary components in Electrograms localize arrhythmogenic substrates in a 3D model of human atria
Catheter ablation, as a treatment for atrial fibrillation (AF), often yields low success rates in the advanced stages of the arrhythmia. Ablation procedures are guided by atrial mapping using electrogram (EGM) signals, which reflect local electrical activations. The primary goal is to identify arrhythmogenic mechanisms, such as rotors, to serve as ablation targets. Given the chaotic nature of AF propagation, these electrical activations occur at variable rates. This work introduces a novel signal processing approach based on the fractional Fourier transform (FrFT) to characterize the non-stationary content in EGM signals. A 3D biophysical and anatomical model of human atria was used to simulate AF, and unipolar EGMs were calculated. The FrFT-based algorithm was applied to all EGM signals, estimating the optimal FrFT order to capture linear frequency modulations. Electroanatomical maps of these optimal FrFT orders were generated. Results revealed that the AF EGMs exhibit non-stationarity, which can be characterized using the FrFT. Rotors displayed a distinct pattern of non-stationarity, allowing for dynamic tracking, while transient mechanisms were identifiable through variations in the FrFT order, showing different patterns than those of rotors. As a generalization of the classical Fourier analysis, FrFT mapping offers clinically interpretable insights into the rate of change in EGM frequency content over time. This method proves valuable for characterizing AF spatiotemporal dynamics by leveraging the non-stationary information inherent in fibrillatory propagation.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.