Storm Miller, Michael Kirkland, Kristen M. Hart, Robert A. McCleery
{"title":"物体探测辅助工作流程有助于监测隐蛇","authors":"Storm Miller, Michael Kirkland, Kristen M. Hart, Robert A. McCleery","doi":"10.1002/rse2.70009","DOIUrl":null,"url":null,"abstract":"Camera traps are an important tool used to study rare and cryptic animals, including snakes. Time‐lapse photography can be particularly useful for studying snakes that often fail to trigger a camera's infrared motion sensor due to their ectothermic nature. However, the large datasets produced by time‐lapse photography require labor‐intensive classification, limiting their use in large‐scale studies. While many artificial intelligence‐based object detection models are effective at identifying mammals in images, their ability to detect snakes is unproven. Here, we used camera data to evaluate the efficacy of an object detection model to rapidly and accurately detect snakes. We classified images manually to the species level and compared this with a hybrid review workflow where the model removed blank images followed by a manual review. Using a ≥0.05 model confidence threshold, our hybrid review workflow correctly identified 94.5% of blank images, completed image classification 6× faster, and detected large (>66 cm) snakes as well as manual review. Conversely, the hybrid review method often failed to detect all instances of a snake in a string of images and detected fewer small (<66 cm) snakes than manual review. However, most relevant ecological information requires only a single detection in a sequence of images, and study design changes could likely improve the detection of smaller snakes. Our findings suggest that an object detection‐assisted hybrid workflow can greatly reduce time spent manually classifying data‐heavy time‐lapse snake studies and facilitate ecological monitoring for large snakes.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"68 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object detection‐assisted workflow facilitates cryptic snake monitoring\",\"authors\":\"Storm Miller, Michael Kirkland, Kristen M. Hart, Robert A. McCleery\",\"doi\":\"10.1002/rse2.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camera traps are an important tool used to study rare and cryptic animals, including snakes. Time‐lapse photography can be particularly useful for studying snakes that often fail to trigger a camera's infrared motion sensor due to their ectothermic nature. However, the large datasets produced by time‐lapse photography require labor‐intensive classification, limiting their use in large‐scale studies. While many artificial intelligence‐based object detection models are effective at identifying mammals in images, their ability to detect snakes is unproven. Here, we used camera data to evaluate the efficacy of an object detection model to rapidly and accurately detect snakes. We classified images manually to the species level and compared this with a hybrid review workflow where the model removed blank images followed by a manual review. Using a ≥0.05 model confidence threshold, our hybrid review workflow correctly identified 94.5% of blank images, completed image classification 6× faster, and detected large (>66 cm) snakes as well as manual review. Conversely, the hybrid review method often failed to detect all instances of a snake in a string of images and detected fewer small (<66 cm) snakes than manual review. However, most relevant ecological information requires only a single detection in a sequence of images, and study design changes could likely improve the detection of smaller snakes. Our findings suggest that an object detection‐assisted hybrid workflow can greatly reduce time spent manually classifying data‐heavy time‐lapse snake studies and facilitate ecological monitoring for large snakes.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.70009\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70009","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Camera traps are an important tool used to study rare and cryptic animals, including snakes. Time‐lapse photography can be particularly useful for studying snakes that often fail to trigger a camera's infrared motion sensor due to their ectothermic nature. However, the large datasets produced by time‐lapse photography require labor‐intensive classification, limiting their use in large‐scale studies. While many artificial intelligence‐based object detection models are effective at identifying mammals in images, their ability to detect snakes is unproven. Here, we used camera data to evaluate the efficacy of an object detection model to rapidly and accurately detect snakes. We classified images manually to the species level and compared this with a hybrid review workflow where the model removed blank images followed by a manual review. Using a ≥0.05 model confidence threshold, our hybrid review workflow correctly identified 94.5% of blank images, completed image classification 6× faster, and detected large (>66 cm) snakes as well as manual review. Conversely, the hybrid review method often failed to detect all instances of a snake in a string of images and detected fewer small (<66 cm) snakes than manual review. However, most relevant ecological information requires only a single detection in a sequence of images, and study design changes could likely improve the detection of smaller snakes. Our findings suggest that an object detection‐assisted hybrid workflow can greatly reduce time spent manually classifying data‐heavy time‐lapse snake studies and facilitate ecological monitoring for large snakes.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.