掺钡Cu2ZnSnSe4太阳能电池的能带对准和缺陷工程:对器件性能的影响

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Neha Kumari, Jitendra Kumar
{"title":"掺钡Cu2ZnSnSe4太阳能电池的能带对准和缺陷工程:对器件性能的影响","authors":"Neha Kumari, Jitendra Kumar","doi":"10.1002/adts.202500022","DOIUrl":null,"url":null,"abstract":"Cu<jats:sub>2</jats:sub>ZnSnSe<jats:sub>4</jats:sub> (CZTSe)‐based photovoltaic devices have emerged as promising next‐generation technology, with recent power conversion efficiencies surpassing 13.8%. In this study, the effects of barium (Ba) incorporation and intrinsic defects on the performance of Cu<jats:sub>2</jats:sub>Ba<jats:italic><jats:sub>x</jats:sub></jats:italic>Zn<jats:sub>1‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>SnSe<jats:sub>4</jats:sub> (CBZTSe) photovoltaic devices are systematically explored. The interface band alignment at both the front and back contacts is analyzed by adjusting the electron affinity of CBZTSe through varying Ba content. Optimal conduction band offsets of 20 meV at the CBZTSe/CdS front interface and 40 meV at the MoSe<jats:sub>2</jats:sub>/CBZTSe back interface are observed for 50% Ba incorporation. The impact of intrinsic defects on device performance is also examined, with shallow defects like <jats:italic>V<jats:sub>Cu</jats:sub></jats:italic> and <jats:italic>Cu<jats:sub>Ba</jats:sub></jats:italic> showing minimal influence at low concentrations, while deep‐level and multivalent defects such as <jats:italic>Cu<jats:sub>i</jats:sub></jats:italic>, <jats:italic>Sn<jats:sub>Cu</jats:sub></jats:italic>, <jats:italic>Sn<jats:sub>i</jats:sub></jats:italic>, and <jats:italic>Se<jats:sub>i</jats:sub></jats:italic> significantly decreased efficiency due to enhanced charge carrier recombination. This study emphasizes the importance of band alignment and defect management in enhancing the performance of CBZTSe‐based PV devices and offers insights for improving their efficiency further.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band Alignment and Defect Engineering in Barium‐Doped Cu2ZnSnSe4 Solar Cells: Implications for Device Performance\",\"authors\":\"Neha Kumari, Jitendra Kumar\",\"doi\":\"10.1002/adts.202500022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu<jats:sub>2</jats:sub>ZnSnSe<jats:sub>4</jats:sub> (CZTSe)‐based photovoltaic devices have emerged as promising next‐generation technology, with recent power conversion efficiencies surpassing 13.8%. In this study, the effects of barium (Ba) incorporation and intrinsic defects on the performance of Cu<jats:sub>2</jats:sub>Ba<jats:italic><jats:sub>x</jats:sub></jats:italic>Zn<jats:sub>1‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>SnSe<jats:sub>4</jats:sub> (CBZTSe) photovoltaic devices are systematically explored. The interface band alignment at both the front and back contacts is analyzed by adjusting the electron affinity of CBZTSe through varying Ba content. Optimal conduction band offsets of 20 meV at the CBZTSe/CdS front interface and 40 meV at the MoSe<jats:sub>2</jats:sub>/CBZTSe back interface are observed for 50% Ba incorporation. The impact of intrinsic defects on device performance is also examined, with shallow defects like <jats:italic>V<jats:sub>Cu</jats:sub></jats:italic> and <jats:italic>Cu<jats:sub>Ba</jats:sub></jats:italic> showing minimal influence at low concentrations, while deep‐level and multivalent defects such as <jats:italic>Cu<jats:sub>i</jats:sub></jats:italic>, <jats:italic>Sn<jats:sub>Cu</jats:sub></jats:italic>, <jats:italic>Sn<jats:sub>i</jats:sub></jats:italic>, and <jats:italic>Se<jats:sub>i</jats:sub></jats:italic> significantly decreased efficiency due to enhanced charge carrier recombination. This study emphasizes the importance of band alignment and defect management in enhancing the performance of CBZTSe‐based PV devices and offers insights for improving their efficiency further.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于Cu2ZnSnSe4 (CZTSe)的光伏器件已经成为有前途的下一代技术,最近的功率转换效率超过13.8%。在本研究中,系统地探讨了钡(Ba)掺入和本征缺陷对Cu2BaxZn1‐xSnSe4 (CBZTSe)光电器件性能的影响。通过改变Ba含量来调节CBZTSe的电子亲和度,分析了前后触点的界面带取向。当Ba掺入率为50%时,CBZTSe/CdS前界面的导带偏移量为20 meV, MoSe2/CBZTSe后界面的导带偏移量为40 meV。本研究还研究了固有缺陷对器件性能的影响,其中浅缺陷如VCu和CuBa在低浓度下影响最小,而深能级和多价缺陷如Cui、SnCu、Sni和Sei由于电荷载流子重组增强而显著降低了效率。本研究强调了波段对准和缺陷管理在提高基于CBZTSe的光伏器件性能中的重要性,并为进一步提高其效率提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Band Alignment and Defect Engineering in Barium‐Doped Cu2ZnSnSe4 Solar Cells: Implications for Device Performance

Band Alignment and Defect Engineering in Barium‐Doped Cu2ZnSnSe4 Solar Cells: Implications for Device Performance
Cu2ZnSnSe4 (CZTSe)‐based photovoltaic devices have emerged as promising next‐generation technology, with recent power conversion efficiencies surpassing 13.8%. In this study, the effects of barium (Ba) incorporation and intrinsic defects on the performance of Cu2BaxZn1‐xSnSe4 (CBZTSe) photovoltaic devices are systematically explored. The interface band alignment at both the front and back contacts is analyzed by adjusting the electron affinity of CBZTSe through varying Ba content. Optimal conduction band offsets of 20 meV at the CBZTSe/CdS front interface and 40 meV at the MoSe2/CBZTSe back interface are observed for 50% Ba incorporation. The impact of intrinsic defects on device performance is also examined, with shallow defects like VCu and CuBa showing minimal influence at low concentrations, while deep‐level and multivalent defects such as Cui, SnCu, Sni, and Sei significantly decreased efficiency due to enhanced charge carrier recombination. This study emphasizes the importance of band alignment and defect management in enhancing the performance of CBZTSe‐based PV devices and offers insights for improving their efficiency further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信