Veronika Niederlova, Juraj Michalik, Barbora Drabonova, Radka Cisarova, David Funda, Ondrej Stepanek
{"title":"无麸质饮食诱导NOD小鼠多个t细胞亚群的小规模变化","authors":"Veronika Niederlova, Juraj Michalik, Barbora Drabonova, Radka Cisarova, David Funda, Ondrej Stepanek","doi":"10.1002/eji.202451559","DOIUrl":null,"url":null,"abstract":"<p>Nonobese diabetic (NOD) mice are a widely used animal model to study mechanisms leading to autoimmune diabetes. A gluten-free diet reduces and delays the incidence of diabetes in NOD mice, but the underlying mechanisms remain largely unknown. In this study, we performed single-cell transcriptomic and flow cytometry analysis of T cells and innate lymphocytes in the spleen and pancreatic lymph nodes of NOD mice fed a gluten-free or standard diet. We observed that the gluten-free diet did not induce a substantial alteration in the abundance or phenotype of any lymphocyte subset that would directly explain its protective effect against diabetes. However, the gluten-free diet induced subtle changes in the differentiation of subsets with previously proposed protective roles in diabetes development, such as Tregs, activated γδT cells, and NKT cells. Globally, the gluten-free diet paradoxically promoted activation and effector differentiation across multiple subpopulations and induced genes regulated by IL-2, IL-7, and IL-15. In contrast, the standard diet induced type I interferon-responsive genes. Overall, the gluten-free diet might prevent diabetes in NOD mice by inducing small-scale changes in multiple cell types rather than acting on a specific lymphocyte subset.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451559","citationCount":"0","resultStr":"{\"title\":\"Gluten-Free Diet Induces Small-Scale Changes Across Multiple T-Cell Subsets in NOD Mice\",\"authors\":\"Veronika Niederlova, Juraj Michalik, Barbora Drabonova, Radka Cisarova, David Funda, Ondrej Stepanek\",\"doi\":\"10.1002/eji.202451559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonobese diabetic (NOD) mice are a widely used animal model to study mechanisms leading to autoimmune diabetes. A gluten-free diet reduces and delays the incidence of diabetes in NOD mice, but the underlying mechanisms remain largely unknown. In this study, we performed single-cell transcriptomic and flow cytometry analysis of T cells and innate lymphocytes in the spleen and pancreatic lymph nodes of NOD mice fed a gluten-free or standard diet. We observed that the gluten-free diet did not induce a substantial alteration in the abundance or phenotype of any lymphocyte subset that would directly explain its protective effect against diabetes. However, the gluten-free diet induced subtle changes in the differentiation of subsets with previously proposed protective roles in diabetes development, such as Tregs, activated γδT cells, and NKT cells. Globally, the gluten-free diet paradoxically promoted activation and effector differentiation across multiple subpopulations and induced genes regulated by IL-2, IL-7, and IL-15. In contrast, the standard diet induced type I interferon-responsive genes. Overall, the gluten-free diet might prevent diabetes in NOD mice by inducing small-scale changes in multiple cell types rather than acting on a specific lymphocyte subset.</p>\",\"PeriodicalId\":165,\"journal\":{\"name\":\"European Journal of Immunology\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451559\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451559\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451559","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Gluten-Free Diet Induces Small-Scale Changes Across Multiple T-Cell Subsets in NOD Mice
Nonobese diabetic (NOD) mice are a widely used animal model to study mechanisms leading to autoimmune diabetes. A gluten-free diet reduces and delays the incidence of diabetes in NOD mice, but the underlying mechanisms remain largely unknown. In this study, we performed single-cell transcriptomic and flow cytometry analysis of T cells and innate lymphocytes in the spleen and pancreatic lymph nodes of NOD mice fed a gluten-free or standard diet. We observed that the gluten-free diet did not induce a substantial alteration in the abundance or phenotype of any lymphocyte subset that would directly explain its protective effect against diabetes. However, the gluten-free diet induced subtle changes in the differentiation of subsets with previously proposed protective roles in diabetes development, such as Tregs, activated γδT cells, and NKT cells. Globally, the gluten-free diet paradoxically promoted activation and effector differentiation across multiple subpopulations and induced genes regulated by IL-2, IL-7, and IL-15. In contrast, the standard diet induced type I interferon-responsive genes. Overall, the gluten-free diet might prevent diabetes in NOD mice by inducing small-scale changes in multiple cell types rather than acting on a specific lymphocyte subset.
期刊介绍:
The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.