{"title":"硫脲在12种有机溶剂中的固液溶解行为溶解度实验,数据关联,溶剂分析,和分子模拟","authors":"Natthapol Traiwongsa , Natthawan Srinam , Vanee Mohdee , Ura Pancharoen , Wikorn Punyain , Kasidit Nootong","doi":"10.1016/j.molliq.2025.127622","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the equilibrium solubility, thermodynamic properties, and molecular simulation of thiourea in twelve organic solvents. The results demonstrate that the solubility of thiourea in pure solvents fits well with the modified Apelblat equation, λh equation, Van’t Hoff equation, and the NRTL model, with <5% average relative deviation (ARD) for all the four thermodynamic models. The thermodynamic properties of thiourea found in the selected solvents are analyzed by the NRTL model, indicating that the mixing process of thiourea in organic solvents is spontaneous. To determine the effect of solvent effects on solubility, the physicochemical properties of the twelve organic solvents are examined. To observe the solubility behavior at atomic level, the molecular simulations were investigated via density functional theory (DFT).</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"429 ","pages":"Article 127622"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid–liquid solubility behavior of thiourea in twelve organic solvents; solubility experiments, data correlation, solvent analysis, and molecular simulations\",\"authors\":\"Natthapol Traiwongsa , Natthawan Srinam , Vanee Mohdee , Ura Pancharoen , Wikorn Punyain , Kasidit Nootong\",\"doi\":\"10.1016/j.molliq.2025.127622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents the equilibrium solubility, thermodynamic properties, and molecular simulation of thiourea in twelve organic solvents. The results demonstrate that the solubility of thiourea in pure solvents fits well with the modified Apelblat equation, λh equation, Van’t Hoff equation, and the NRTL model, with <5% average relative deviation (ARD) for all the four thermodynamic models. The thermodynamic properties of thiourea found in the selected solvents are analyzed by the NRTL model, indicating that the mixing process of thiourea in organic solvents is spontaneous. To determine the effect of solvent effects on solubility, the physicochemical properties of the twelve organic solvents are examined. To observe the solubility behavior at atomic level, the molecular simulations were investigated via density functional theory (DFT).</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"429 \",\"pages\":\"Article 127622\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732225007949\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225007949","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solid–liquid solubility behavior of thiourea in twelve organic solvents; solubility experiments, data correlation, solvent analysis, and molecular simulations
This work presents the equilibrium solubility, thermodynamic properties, and molecular simulation of thiourea in twelve organic solvents. The results demonstrate that the solubility of thiourea in pure solvents fits well with the modified Apelblat equation, λh equation, Van’t Hoff equation, and the NRTL model, with <5% average relative deviation (ARD) for all the four thermodynamic models. The thermodynamic properties of thiourea found in the selected solvents are analyzed by the NRTL model, indicating that the mixing process of thiourea in organic solvents is spontaneous. To determine the effect of solvent effects on solubility, the physicochemical properties of the twelve organic solvents are examined. To observe the solubility behavior at atomic level, the molecular simulations were investigated via density functional theory (DFT).
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.