Fuping Gao , Xiaohua Zhou , Jin Wei , Qiong Sun , Jiapeng Wang , Qing Li
{"title":"CGB5基因在胃癌中的表达特征及生物学功能","authors":"Fuping Gao , Xiaohua Zhou , Jin Wei , Qiong Sun , Jiapeng Wang , Qing Li","doi":"10.1016/j.acthis.2025.152254","DOIUrl":null,"url":null,"abstract":"<div><div>Objective: The chorionic gonadotropin (CG) subunit beta 5 (CGB5) gene is a member of the glycoprotein hormone β chain family, encoding the β5 subunit of CG, which has been shown to promote tumorigenesis and induce proliferation in various types of cancer including gastric cancer (GC). However, the mechanistic role of CGB5 in GC has not been fully elucidated. Therefore, this study investigated relevant genes that regulate GC through bioinformatics analysis. Methods: Immunohistochemistry, immunofluorescence, and western blot (WB) detection methods were appropriately used to evaluate the expression pattern and clinical significance of CGB5 in 100 Chinese GC patients that were recruited from the Gaochun People's Hospital. The effect of small interfering ribonucleic acid (siRNA) on apoptosis, migration, and invasion of GC cells was investigated in vitro. Three-dimensional tumor spheres of these two types of GC cells (NCI-N87 cells and MKN45 cells) were constructed before investigation of the Calcein acetoxymethyl ester (AM)/ Propidium iodide (PI) staining, flow cytometric apoptosis, and apoptotic-related protein content of the tumor spheres after siRNA inhibition of CGB5 expression. Results: It was observed that compared with adjacent normal gastric tissue, expression of CGB5 was significantly upregulated in GC tissue. The siRNA inhibited CGB5 expression in two GC cell lines (NCI-N87 cells and MKN45 cells). Also, it was discovered that CGB5 highly correlated with microsatellite instability (MSI) and immune cell activity in GC, thus revealing the greater research value of CGB5 gene. More importantly, CGB5 siRNA could inhibit invasion and migration of tumor cells, induce apoptosis of GC cells and GC tumor spheres, as well as the mechanism relating to regulation of apoptosis associated gene expression. Overall, the findings suggest that CGB5 may play a crucial role in the development of GC carcinogenesis. Thus, this research may contribute to design of potential drug targets for treatment of GC.</div></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"127 2","pages":"Article 152254"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression characteristics and biological functions of CGB5 gene in gastric cancer\",\"authors\":\"Fuping Gao , Xiaohua Zhou , Jin Wei , Qiong Sun , Jiapeng Wang , Qing Li\",\"doi\":\"10.1016/j.acthis.2025.152254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Objective: The chorionic gonadotropin (CG) subunit beta 5 (CGB5) gene is a member of the glycoprotein hormone β chain family, encoding the β5 subunit of CG, which has been shown to promote tumorigenesis and induce proliferation in various types of cancer including gastric cancer (GC). However, the mechanistic role of CGB5 in GC has not been fully elucidated. Therefore, this study investigated relevant genes that regulate GC through bioinformatics analysis. Methods: Immunohistochemistry, immunofluorescence, and western blot (WB) detection methods were appropriately used to evaluate the expression pattern and clinical significance of CGB5 in 100 Chinese GC patients that were recruited from the Gaochun People's Hospital. The effect of small interfering ribonucleic acid (siRNA) on apoptosis, migration, and invasion of GC cells was investigated in vitro. Three-dimensional tumor spheres of these two types of GC cells (NCI-N87 cells and MKN45 cells) were constructed before investigation of the Calcein acetoxymethyl ester (AM)/ Propidium iodide (PI) staining, flow cytometric apoptosis, and apoptotic-related protein content of the tumor spheres after siRNA inhibition of CGB5 expression. Results: It was observed that compared with adjacent normal gastric tissue, expression of CGB5 was significantly upregulated in GC tissue. The siRNA inhibited CGB5 expression in two GC cell lines (NCI-N87 cells and MKN45 cells). Also, it was discovered that CGB5 highly correlated with microsatellite instability (MSI) and immune cell activity in GC, thus revealing the greater research value of CGB5 gene. More importantly, CGB5 siRNA could inhibit invasion and migration of tumor cells, induce apoptosis of GC cells and GC tumor spheres, as well as the mechanism relating to regulation of apoptosis associated gene expression. Overall, the findings suggest that CGB5 may play a crucial role in the development of GC carcinogenesis. Thus, this research may contribute to design of potential drug targets for treatment of GC.</div></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"127 2\",\"pages\":\"Article 152254\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128125000261\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128125000261","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Expression characteristics and biological functions of CGB5 gene in gastric cancer
Objective: The chorionic gonadotropin (CG) subunit beta 5 (CGB5) gene is a member of the glycoprotein hormone β chain family, encoding the β5 subunit of CG, which has been shown to promote tumorigenesis and induce proliferation in various types of cancer including gastric cancer (GC). However, the mechanistic role of CGB5 in GC has not been fully elucidated. Therefore, this study investigated relevant genes that regulate GC through bioinformatics analysis. Methods: Immunohistochemistry, immunofluorescence, and western blot (WB) detection methods were appropriately used to evaluate the expression pattern and clinical significance of CGB5 in 100 Chinese GC patients that were recruited from the Gaochun People's Hospital. The effect of small interfering ribonucleic acid (siRNA) on apoptosis, migration, and invasion of GC cells was investigated in vitro. Three-dimensional tumor spheres of these two types of GC cells (NCI-N87 cells and MKN45 cells) were constructed before investigation of the Calcein acetoxymethyl ester (AM)/ Propidium iodide (PI) staining, flow cytometric apoptosis, and apoptotic-related protein content of the tumor spheres after siRNA inhibition of CGB5 expression. Results: It was observed that compared with adjacent normal gastric tissue, expression of CGB5 was significantly upregulated in GC tissue. The siRNA inhibited CGB5 expression in two GC cell lines (NCI-N87 cells and MKN45 cells). Also, it was discovered that CGB5 highly correlated with microsatellite instability (MSI) and immune cell activity in GC, thus revealing the greater research value of CGB5 gene. More importantly, CGB5 siRNA could inhibit invasion and migration of tumor cells, induce apoptosis of GC cells and GC tumor spheres, as well as the mechanism relating to regulation of apoptosis associated gene expression. Overall, the findings suggest that CGB5 may play a crucial role in the development of GC carcinogenesis. Thus, this research may contribute to design of potential drug targets for treatment of GC.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted