高场核磁共振在化学研究中的应用

IF 2.624
Qian Li , Junfeng Xiang
{"title":"高场核磁共振在化学研究中的应用","authors":"Qian Li ,&nbsp;Junfeng Xiang","doi":"10.1016/j.jmro.2025.100199","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of NMR magnet and probe technology, high-field NMR spectrometers equipped with high-resolution and high-sensitivity probes will find broader applications in the field of chemical research. The spectral resolution of NMR increases proportionally with the magnetic field strength (B0). Higher magnetic fields of NMR increase the separation between different resonant frequencies of nuclei, leading to better spectral resolution. Besides spectral resolution, the signal-to-noise ratio (SNR) is proportional to the magnetic field strength raised to the power of three-halves. Advancements in probe technology over the past few decades have led to the widespread adoption of probeheads equipped with coils and preamplifiers that are cryogenically cooled by cold helium or nitrogen. This significantly reduces system noise, thereby improving SNR in detection. A series of typical applications of high-field nuclear magnetic resonance (NMR) in chemical research has been introduced. By utilizing the broadband direct observe cryoprobe (DOCP), a wide range of nuclei can be detected with high sensitivity, enabling the efficient characterization of numerous chemical systems at natural abundance, without the need for time-consuming and costly isotope labeling processes. High-field, high-sensitivity, and high-resolution NMR techniques provide promising tools that are likely to play an increasingly important role in future chemical investigations.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"23 ","pages":"Article 100199"},"PeriodicalIF":2.6240,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of high-field nuclear magnetic resonance (NMR) in chemical research\",\"authors\":\"Qian Li ,&nbsp;Junfeng Xiang\",\"doi\":\"10.1016/j.jmro.2025.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid advancement of NMR magnet and probe technology, high-field NMR spectrometers equipped with high-resolution and high-sensitivity probes will find broader applications in the field of chemical research. The spectral resolution of NMR increases proportionally with the magnetic field strength (B0). Higher magnetic fields of NMR increase the separation between different resonant frequencies of nuclei, leading to better spectral resolution. Besides spectral resolution, the signal-to-noise ratio (SNR) is proportional to the magnetic field strength raised to the power of three-halves. Advancements in probe technology over the past few decades have led to the widespread adoption of probeheads equipped with coils and preamplifiers that are cryogenically cooled by cold helium or nitrogen. This significantly reduces system noise, thereby improving SNR in detection. A series of typical applications of high-field nuclear magnetic resonance (NMR) in chemical research has been introduced. By utilizing the broadband direct observe cryoprobe (DOCP), a wide range of nuclei can be detected with high sensitivity, enabling the efficient characterization of numerous chemical systems at natural abundance, without the need for time-consuming and costly isotope labeling processes. High-field, high-sensitivity, and high-resolution NMR techniques provide promising tools that are likely to play an increasingly important role in future chemical investigations.</div></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"23 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441025000159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441025000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着 NMR 磁体和探针技术的快速发展,配备高分辨率和高灵敏度探针的高场 NMR 光谱仪将在化学研究领域得到更广泛的应用。NMR 的光谱分辨率与磁场强度 (B0) 成比例增加。核磁共振的磁场强度越高,原子核不同共振频率之间的间隔就越大,光谱分辨率也就越高。除光谱分辨率外,信噪比(SNR)与磁场强度的三半球幂成正比。过去几十年来,探针技术的进步使配备线圈和前置放大器的探针头得到广泛采用,线圈和前置放大器由低温氦气或氮气低温冷却。这大大降低了系统噪声,从而提高了探测的信噪比。介绍了高场核磁共振(NMR)在化学研究中的一系列典型应用。利用宽带直接观察低温探针 (DOCP),可以高灵敏度地检测到多种核素,从而可以高效地表征天然丰度的多种化学体系,而无需耗时和昂贵的同位素标记过程。高场、高灵敏度和高分辨率核磁共振技术提供了前景广阔的工具,很可能在未来的化学研究中发挥越来越重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Applications of high-field nuclear magnetic resonance (NMR) in chemical research

Applications of high-field nuclear magnetic resonance (NMR) in chemical research
With the rapid advancement of NMR magnet and probe technology, high-field NMR spectrometers equipped with high-resolution and high-sensitivity probes will find broader applications in the field of chemical research. The spectral resolution of NMR increases proportionally with the magnetic field strength (B0). Higher magnetic fields of NMR increase the separation between different resonant frequencies of nuclei, leading to better spectral resolution. Besides spectral resolution, the signal-to-noise ratio (SNR) is proportional to the magnetic field strength raised to the power of three-halves. Advancements in probe technology over the past few decades have led to the widespread adoption of probeheads equipped with coils and preamplifiers that are cryogenically cooled by cold helium or nitrogen. This significantly reduces system noise, thereby improving SNR in detection. A series of typical applications of high-field nuclear magnetic resonance (NMR) in chemical research has been introduced. By utilizing the broadband direct observe cryoprobe (DOCP), a wide range of nuclei can be detected with high sensitivity, enabling the efficient characterization of numerous chemical systems at natural abundance, without the need for time-consuming and costly isotope labeling processes. High-field, high-sensitivity, and high-resolution NMR techniques provide promising tools that are likely to play an increasingly important role in future chemical investigations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信