基于二维g-C3N4复合电极材料的Fe2O3异质结构研究

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Umesh V. Shembade , Babasaheb T. Shinde , Mayuri G. Magadum , Sandeep B. Wategaonkar , Hemant V. Chavan , Mohammad Rafe Hatshan , Kulurumotlakatla Dasha Kumar , Annasaheb V. Moholkar
{"title":"基于二维g-C3N4复合电极材料的Fe2O3异质结构研究","authors":"Umesh V. Shembade ,&nbsp;Babasaheb T. Shinde ,&nbsp;Mayuri G. Magadum ,&nbsp;Sandeep B. Wategaonkar ,&nbsp;Hemant V. Chavan ,&nbsp;Mohammad Rafe Hatshan ,&nbsp;Kulurumotlakatla Dasha Kumar ,&nbsp;Annasaheb V. Moholkar","doi":"10.1016/j.solidstatesciences.2025.107934","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we have studied fabricating high-performance based supercapacitors (SCs) using ferrite (Fe<sub>2</sub>O<sub>3</sub>) heterostructures which are anchored on two-dimensional graphitic nitrite (g-C<sub>3</sub>N<sub>4</sub>) via simple and low-cost chemical method for energy storage application. In this work, the Fe<sub>2</sub>O<sub>3</sub>, g-C<sub>3</sub>N<sub>4</sub>, and g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>2</sub>O<sub>3</sub> composites were characterized using various physico-chemical techniques to analyze their crystal structures, stretching/bending vibrations, surface morphology, specific surface area, and the presence of the different electronic states, respectively. As a result, the prepared g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>2</sub>O<sub>3</sub> composite exhibited a high specific capacitance and capacity of 1143 F/g and 254 mAh/g at a current density of 5 mA/cm<sup>2</sup> over other electrodes. However, the fabricated device reveals the maximum energy density of 33 Wh/kg and the power density of 3200 W/kg with superior electrochemical stability of 89 % over 5000 cycles. Based on the above results, the prepared g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>2</sub>O<sub>3</sub> composites showed better flexibility, high supercapacitive performance, and a long lifetime stability. Therefore, this research opens up an exciting possibilities for developing advanced supercapacitor activities.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"164 ","pages":"Article 107934"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Fe2O3 heterostructures anchored on 2D g-C3N4 composite electrode materials for supercapacitor activities\",\"authors\":\"Umesh V. Shembade ,&nbsp;Babasaheb T. Shinde ,&nbsp;Mayuri G. Magadum ,&nbsp;Sandeep B. Wategaonkar ,&nbsp;Hemant V. Chavan ,&nbsp;Mohammad Rafe Hatshan ,&nbsp;Kulurumotlakatla Dasha Kumar ,&nbsp;Annasaheb V. Moholkar\",\"doi\":\"10.1016/j.solidstatesciences.2025.107934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, we have studied fabricating high-performance based supercapacitors (SCs) using ferrite (Fe<sub>2</sub>O<sub>3</sub>) heterostructures which are anchored on two-dimensional graphitic nitrite (g-C<sub>3</sub>N<sub>4</sub>) via simple and low-cost chemical method for energy storage application. In this work, the Fe<sub>2</sub>O<sub>3</sub>, g-C<sub>3</sub>N<sub>4</sub>, and g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>2</sub>O<sub>3</sub> composites were characterized using various physico-chemical techniques to analyze their crystal structures, stretching/bending vibrations, surface morphology, specific surface area, and the presence of the different electronic states, respectively. As a result, the prepared g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>2</sub>O<sub>3</sub> composite exhibited a high specific capacitance and capacity of 1143 F/g and 254 mAh/g at a current density of 5 mA/cm<sup>2</sup> over other electrodes. However, the fabricated device reveals the maximum energy density of 33 Wh/kg and the power density of 3200 W/kg with superior electrochemical stability of 89 % over 5000 cycles. Based on the above results, the prepared g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>2</sub>O<sub>3</sub> composites showed better flexibility, high supercapacitive performance, and a long lifetime stability. Therefore, this research opens up an exciting possibilities for developing advanced supercapacitor activities.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"164 \",\"pages\":\"Article 107934\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255825001128\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825001128","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们研究了利用铁氧体(Fe2O3)异质结构通过简单和低成本的化学方法锚定在二维石墨亚硝酸盐(g-C3N4)上制备高性能超级电容器(SCs)的储能应用。在这项工作中,利用各种物理化学技术分别分析了Fe2O3, g-C3N4和g-C3N4/Fe2O3复合材料的晶体结构,拉伸/弯曲振动,表面形貌,比表面积以及不同电子态的存在。结果表明,制备的g- c3n4 /Fe2O3复合材料在电流密度为5 mA/cm2时具有较高的比电容和容量,分别为1143 F/g和254 mAh/g。然而,该装置的最大能量密度为33 Wh/kg,功率密度为3200 W/kg,在5000次循环中电化学稳定性达到89%。综上所述,制备的g-C3N4/Fe2O3复合材料具有较好的柔韧性、较高的超级电容性能和较长的寿命稳定性。因此,这项研究为开发先进的超级电容器活动开辟了令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of Fe2O3 heterostructures anchored on 2D g-C3N4 composite electrode materials for supercapacitor activities

Development of Fe2O3 heterostructures anchored on 2D g-C3N4 composite electrode materials for supercapacitor activities
Herein, we have studied fabricating high-performance based supercapacitors (SCs) using ferrite (Fe2O3) heterostructures which are anchored on two-dimensional graphitic nitrite (g-C3N4) via simple and low-cost chemical method for energy storage application. In this work, the Fe2O3, g-C3N4, and g-C3N4/Fe2O3 composites were characterized using various physico-chemical techniques to analyze their crystal structures, stretching/bending vibrations, surface morphology, specific surface area, and the presence of the different electronic states, respectively. As a result, the prepared g-C3N4/Fe2O3 composite exhibited a high specific capacitance and capacity of 1143 F/g and 254 mAh/g at a current density of 5 mA/cm2 over other electrodes. However, the fabricated device reveals the maximum energy density of 33 Wh/kg and the power density of 3200 W/kg with superior electrochemical stability of 89 % over 5000 cycles. Based on the above results, the prepared g-C3N4/Fe2O3 composites showed better flexibility, high supercapacitive performance, and a long lifetime stability. Therefore, this research opens up an exciting possibilities for developing advanced supercapacitor activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信