Bingshuo Guo;Minghui Liwang;Xiaoyu Xia;Li Li;Zhenzhen Jiao;Seyyedali Hosseinalipour;Xianbin Wang
{"title":"动态车辆云上的无缝图任务调度:一种集成驾驶员和瞬时决策的混合方法","authors":"Bingshuo Guo;Minghui Liwang;Xiaoyu Xia;Li Li;Zhenzhen Jiao;Seyyedali Hosseinalipour;Xianbin Wang","doi":"10.1109/TSC.2025.3562340","DOIUrl":null,"url":null,"abstract":"Vehicular clouds (VCs) play a crucial role in the Internet-of-Vehicles (IoV) ecosystem by securing essential computing resources for a wide range of tasks. This paPertackles the intricacies of resource provisioning in dynamic VCs for computation-intensive tasks, represented by undirected graphs for parallel processing over multiple vehicles. We model the dynamics of VCs by considering multiple factors, including varying communication quality among vehicles, fluctuating computing capabilities of vehicles, uncertain contact duration among vehicles, and dynamic data exchange costs between vehicles. Our primary goal is to obtain feasible assignments between task components and nearby vehicles, called <italic>templates</i>, in a timely manner with minimized task completion time and data exchange overhead. To achieve this, we <bold>p</b>ropose a <bold>h</b>ybrid graph <bold>t</b>ask <bold>s</b>cheduling (P-HTS) methodology that combines offline and online decision-making modes. For the offline mode, we introduce an approach called risk-aware pilot isomorphic subgraph searching (RA-PilotISS), which predicts feasible solutions for task scheduling in advance based on historical information. Then, for the online mode, we propose time-efficient instantaneous isomorphic subgraph searching (TE-InstaISS), serving as a backup approach for quickly identifying new optimal scheduling template when the one identified by RA-PilotISS becomes inapplicable due to changing conditions. Through comprehensive experiments, we demonstrate the superiority of our proposed hybrid mechanism compared to state-of-the-art methods in terms of various evaluative metrics, e.g., time efficiency such as the delay caused by seeking for possible templates and task completion time, as well as cost function, upon considering different VC scales and graph task topologies.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 3","pages":"1753-1768"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seamless Graph Task Scheduling Over Dynamic Vehicular Clouds: A Hybrid Methodology for Integrating Pilot and Instantaneous Decisions\",\"authors\":\"Bingshuo Guo;Minghui Liwang;Xiaoyu Xia;Li Li;Zhenzhen Jiao;Seyyedali Hosseinalipour;Xianbin Wang\",\"doi\":\"10.1109/TSC.2025.3562340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular clouds (VCs) play a crucial role in the Internet-of-Vehicles (IoV) ecosystem by securing essential computing resources for a wide range of tasks. This paPertackles the intricacies of resource provisioning in dynamic VCs for computation-intensive tasks, represented by undirected graphs for parallel processing over multiple vehicles. We model the dynamics of VCs by considering multiple factors, including varying communication quality among vehicles, fluctuating computing capabilities of vehicles, uncertain contact duration among vehicles, and dynamic data exchange costs between vehicles. Our primary goal is to obtain feasible assignments between task components and nearby vehicles, called <italic>templates</i>, in a timely manner with minimized task completion time and data exchange overhead. To achieve this, we <bold>p</b>ropose a <bold>h</b>ybrid graph <bold>t</b>ask <bold>s</b>cheduling (P-HTS) methodology that combines offline and online decision-making modes. For the offline mode, we introduce an approach called risk-aware pilot isomorphic subgraph searching (RA-PilotISS), which predicts feasible solutions for task scheduling in advance based on historical information. Then, for the online mode, we propose time-efficient instantaneous isomorphic subgraph searching (TE-InstaISS), serving as a backup approach for quickly identifying new optimal scheduling template when the one identified by RA-PilotISS becomes inapplicable due to changing conditions. Through comprehensive experiments, we demonstrate the superiority of our proposed hybrid mechanism compared to state-of-the-art methods in terms of various evaluative metrics, e.g., time efficiency such as the delay caused by seeking for possible templates and task completion time, as well as cost function, upon considering different VC scales and graph task topologies.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 3\",\"pages\":\"1753-1768\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969821/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969821/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Seamless Graph Task Scheduling Over Dynamic Vehicular Clouds: A Hybrid Methodology for Integrating Pilot and Instantaneous Decisions
Vehicular clouds (VCs) play a crucial role in the Internet-of-Vehicles (IoV) ecosystem by securing essential computing resources for a wide range of tasks. This paPertackles the intricacies of resource provisioning in dynamic VCs for computation-intensive tasks, represented by undirected graphs for parallel processing over multiple vehicles. We model the dynamics of VCs by considering multiple factors, including varying communication quality among vehicles, fluctuating computing capabilities of vehicles, uncertain contact duration among vehicles, and dynamic data exchange costs between vehicles. Our primary goal is to obtain feasible assignments between task components and nearby vehicles, called templates, in a timely manner with minimized task completion time and data exchange overhead. To achieve this, we propose a hybrid graph task scheduling (P-HTS) methodology that combines offline and online decision-making modes. For the offline mode, we introduce an approach called risk-aware pilot isomorphic subgraph searching (RA-PilotISS), which predicts feasible solutions for task scheduling in advance based on historical information. Then, for the online mode, we propose time-efficient instantaneous isomorphic subgraph searching (TE-InstaISS), serving as a backup approach for quickly identifying new optimal scheduling template when the one identified by RA-PilotISS becomes inapplicable due to changing conditions. Through comprehensive experiments, we demonstrate the superiority of our proposed hybrid mechanism compared to state-of-the-art methods in terms of various evaluative metrics, e.g., time efficiency such as the delay caused by seeking for possible templates and task completion time, as well as cost function, upon considering different VC scales and graph task topologies.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.